Advertisement

Quantum Dot-Based Thin-Film III–V Solar Cells

Chapter
  • 547 Downloads
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 27)

Abstract

In this work, we report our recent results in the development of thin-film III–V solar cells fabricated by epitaxial lift-off (ELO) combining quantum dots (QD) and light management structures. Possible paths to overcome two of the most relevant issues posed by quantum dot solar cells (QDSC), namely, the degradation of open circuit voltage and the weak photon harvesting by QDs, are evaluated both theoretically and experimentally. High open circuit voltage QDSCs grown by molecular beam epitaxy are demonstrated, both in wafer-based and ELO thin-film configuration. This paves the way to the implementation in the genuine thin-film structure of advanced photon management approaches to enhance the QD photocurrent and to further optimize the photovoltage. We show that the use of light trapping is essential to attain high-efficiency QDSCs. Based on transport and rigorous electromagnetic simulations, we derive design guidelines towards light-trapping enhanced thin-film QDSCs with efficiency higher than 28% under unconcentrated light, ambient temperature. If photon recycling can be fully exploited, 30% efficiency is deemed to be feasible. Towards this goal, results on the development and integration of optimized planar and micro-patterned mirrors, diffractive gratings and broadband antireflection coatings are presented.

Keywords

Solar cell III–V semiconductors Thin-film Epitaxial lift-off Quantum dot Light trapping 

Notes

Acknowledgements

The work was partly funded by the European Union Horizon 2020 projects TFQD (Grant Agreement No. 687253) and ERC AdG project AMETIST (Grant Agreement No. ERC-2015-AdG 695116). The authors would also like to thank Dr. Arto Aho for valuable discussions, Dr. Jari Lyytikäinen and Mr. Eero Halonen for MBE-related actions and Ms. Marianna Raappana and Mrs. Ninja Kajas for sample processing support. The authors would also like to thank Prof. Huiyun Liu for his help with starting the QD growths.

References

  1. 1.
    Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2015). Solar cell efficiency tables (Version 45). Progress in Photovoltaics: Research and Applications, 23, 1–9.CrossRefGoogle Scholar
  2. 2.
    Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510–519.CrossRefGoogle Scholar
  3. 3.
    Tanabe, K., Guimard, D., Bordel, D., & Arakawa, Y. (2012). High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition. Applied Physics Letters, 100, 193905.CrossRefGoogle Scholar
  4. 4.
    Jackson, E. D. (1955). Transactions of the conference on the use of solar energy (pp. 122–126). Tucson, AZ:University of Arizona Press.Google Scholar
  5. 5.
    Ekins-Daukes, N. J. (2014) III-V solar cells. In G. Conibeer, & A. Willoughby (Eds.), Solar cell materials: Developing technologies (pp. 113–143). Wiley.Google Scholar
  6. 6.
    Marti, A., & Araújo, G. L. (1996). Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials & Solar Cells, 43, 203–222.CrossRefGoogle Scholar
  7. 7.
    Brown, A. S., & Green, M. A. (2002). Limiting efficiency for current-constrained two-terminal tandem cell stacks. Progress in Photovoltaics: Research and Applications, 10, 299–307.CrossRefGoogle Scholar
  8. 8.
    Dimroth, F., & Kurtz, S. (2007). High-efficiency multijunction solar cells. MRS Bulletin, 32, 230–235.CrossRefGoogle Scholar
  9. 9.
    Dimroth, F., Tibbits, T. N., Niemeyer, M., Predan, F., Beutel, P., Karcher, C., Oliva, E., Siefer, G., Lackner, D., Fuß-Kailuweit, P., & Bett, A. W. (2015). Four-junction wafer-bonded concentrator solar cells. IEEE Journal of Photovoltaics, 6, 343–349.CrossRefGoogle Scholar
  10. 10.
    Philipps, S. P., Bett, A. W., Horowitz, K., & Kurtz, S. (2015). Current status of concentrator photovoltaic (CPV) technology (No. NREL/TP-5J00-65130). National Renewable Energy Lab (NREL), Golden, CO (United States).Google Scholar
  11. 11.
    Branker, K., Pathak, M. J. M., & Pearce, J. M. (2011). A review of solar photovoltaic levelized cost of electricity. Renewable and Sustainable Energy Reviews, 15, 4470–4482.CrossRefGoogle Scholar
  12. 12.
    Tatavarti, R., Hillier, G., Dzankovic, A., Martin, G., Tuminello, F., Navaratnarajah, R., Du, G., Vu, D. P., & Pan, N. (2008). Lightweight, low cost GaAs solar cells on 4″ epitaxial liftoff (ELO) wafers. In 2008 33rd IEEE Photovoltaic Specialists Conference, 1–4.Google Scholar
  13. 13.
    Bauhuis, G. J., Mulder, P., Haverkamp, E. J., Schermer, J. J., Bongers, E., Oomen, G., Köstler, W., & Strobl, G. (2010). Wafer reuse for repeated growth of III–V solar cells. Progress in Photovoltaics: Research and Applications, 18, 155–159.CrossRefGoogle Scholar
  14. 14.
    Kayes, B. M., Nie, H., Twist, R., Spruytte, S. G., Reinhardt, F., Kizilyalli, I. C., & Higashi, G. S. (2011). 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 37th IEEE Photovoltaic Specialists Conference (pp. 4–8).Google Scholar
  15. 15.
    Lush, G., & Lundstrom, M. (1991). Thin film approaches for high-efficiency III–V cells. Solar cells, 30, 337–344.CrossRefGoogle Scholar
  16. 16.
    Miller, O. D., Yablonovitch, E., & Kurtz, S. R. (2012). Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE Journal of Photovoltaics, 2, 303–311.CrossRefGoogle Scholar
  17. 17.
    Wang, X., Khan, M. R., Gray, J. L., Alam, M. A., & Lundstrom, M. S. (2013). Design of GaAs solar cells operating close to the Shockley–Queisser limit. IEEE Journal of Photovoltaics, 3, 737–744.CrossRefGoogle Scholar
  18. 18.
    National Renewable Energy Laboratory (NREL). (n.d.). Low-cost III-V solar cells. Retrieved from https://www.nrel.gov/pv/low-cost-iii-v-solar-cells.html.
  19. 19.
    Kurtz, S. R., Olson, J. M., & Faine, P. (1991). The difference between standard and average efficiencies of multijunction compared with single-junction concentrator cells. Solar Cells, 30, 501–513.CrossRefGoogle Scholar
  20. 20.
    Warmann, E. C., & Atwater, H. A. (2016). Energy production advantage of independent subcell connection for multijunction photovoltaics. Energy Science & Engineering, 4, 235–244.CrossRefGoogle Scholar
  21. 21.
    Villa, J., & Martí, A. (2017). Impact of the spectrum in the annual energy production of multijunction solar cells. IEEE Journal of Photovoltaics, 7, 1479–1484.CrossRefGoogle Scholar
  22. 22.
    Warren, E. L., Deceglie, M. G., Rienäcker, M., Peibst, R., Tamboli, A. C., & Stradins, P. (2018). Maximizing tandem solar cell power extraction using a three-terminal design. Sustainable Energy & Fuels, 2, 1141–1147.CrossRefGoogle Scholar
  23. 23.
    Linares, P. G., Antolín, E., & Martí, A. (2019). Novel heterojunction bipolar transistor architectures for the practical implementation of high-efficiency three-terminal solar cells. Solar Energy Materials & Solar Cells, 194, 54–61.CrossRefGoogle Scholar
  24. 24.
    Barnham, K. W. J., Ballard, I., Connolly, J. P., Ekins-Daukes, N. J., Kluftinger, B. G., Nelson, J., & Rohr, C. (2002). Quantum well solar cells. Physica E: Low-dimensional Systems and Nanostructures, 14, 27–36.CrossRefGoogle Scholar
  25. 25.
    Aroutiounian, V., Petrosyan, S., Khachatryan, A., & Touryan, K. (2001). Quantum dot solar cells. Journal of Applied Physics, 89, 2268–2271.CrossRefGoogle Scholar
  26. 26.
    Hubbard, S., Bailey, C., Polly, S., Cress, C. D., Andersen, J., Forbes, D. V., & Raffaelle, R. P. (2009). Nanostructured photovoltaics for space power. Journal of Nanophotonics, 3, 031880.CrossRefGoogle Scholar
  27. 27.
    Lumb, M. P., Dobbin, A. L., Bushnell, D. B., Lee, K. H., & Tibbits, T. N. D. (2010). Comparing the energy yield of (III–V) multi-junction cells with different numbers of sub-cells. AIP Conference Proceedings 1277, 299–302.Google Scholar
  28. 28.
    Welser, R. E., Sood, A. K., Laghumavarapu, R. B., Huffaker, D. L., Wilt, D. M., Dhar, N. K., & Sablon, K. A. (2015). The physics of high-efficiency thin-film III-V solar cells. In Solar cells-new approaches and reviews. IntechOpen.Google Scholar
  29. 29.
    Luque, A., & Martí, A. (1997). Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 78, 5014.CrossRefGoogle Scholar
  30. 30.
    Luque, A., & Martí, A. (2010). The intermediate band solar cell: Progress toward the realization of an attractive concept. Advanced Materials, 22, 160–174.CrossRefGoogle Scholar
  31. 31.
    Okada, Y., Ekins-Daukes, N. J., Kita, T., Tamaki, R., Yoshida, M., Pusch, A., Hess, O., Phillips, C. C., Farrell, D. J., Yoshida, K., & Ahsan, N. (2015). Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews, 2, 021302.CrossRefGoogle Scholar
  32. 32.
    Sakamoto, K., Kondo, Y., Uchida, K., & Yamaguchi, K. (2012). Quantum-dot density dependence of power conversion efficiency of intermediate-band solar cells. Journal of Applied Physics, 112, 124515.CrossRefGoogle Scholar
  33. 33.
    Hubbard, S. M., Cress, C. D., Bailey, C. G., Raffaelle, R. P., Bailey, S. G., & Wilt, D. M. (2008). Effect of strain compensation on quantum dot enhanced GaAs solar cells. Applied Physics Letters, 92, 123512.CrossRefGoogle Scholar
  34. 34.
    Zhou, D., Sharma, G., Thomassen, S., Reenaas, T., & Fimland, B. (2010). Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy. Applied Physics Letters, 96, 061913.CrossRefGoogle Scholar
  35. 35.
    Fujita, H., Yamamoto, K., Ohta, J., Eguchi, Y., & Yamaguchi, K. (2011). In-plane quantum-dot superlattices of inas on gaassb/gaas (001) for intermediate band solar-cells. Proceedings of the 37th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 2612–2614).Google Scholar
  36. 36.
    Tutu, F. K., Wu, J., Lam, P., Tang, M., Miyashita, N., Okada, Y., Wilson, J., Allison, R., & Liu, H. (2013). Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells. Applied Physics Letters, 103, 043901.CrossRefGoogle Scholar
  37. 37.
    Sameshima, K., Sano, T., & Yamaguchi, K. (2016). Self-formation of ultrahigh-density (1012 cm-2) inas quantum dots on inassb/gaas (001) and their photoluminescence properties. Applied Physics Express, 9, 075501.CrossRefGoogle Scholar
  38. 38.
    Akahane, K., Yamamoto, N., & Kawanishi, T. (2011). Fabrication of ultra-high-density inas quantum dots using the strain-compensation technique. Physica Status Solidi (a), 208, 425–428.CrossRefGoogle Scholar
  39. 39.
    Sugaya, T., Numakami, O., Oshima, R., Furue, S., Komaki, H., Amano, T., Matsubara, K., Okano, Y., & Niki, S. (2012). Ultra-high stacks of InGaAs/GaAs quantum dots for high efficiency solar cells. Energy & Environmental Science, 5, 6233–6237.CrossRefGoogle Scholar
  40. 40.
    Cappelluti, F., Kim, D., van Eerden, M., Cédola, A. P., Aho, T., Bissels, G., Elsehrawy, F., Wu, J., Liu, H., Mulder, P., Bauhuis, G., Schermer J. J., Niemi T., & Guina M. (2018). Light-trapping enhanced thin-film III-V quantum dot solar cells fabricated by epitaxial lift-off. Solar Energy Materials & Solar Cells, 181, 83–92.CrossRefGoogle Scholar
  41. 41.
    Mellor, A., Luque, A., Tobías, I., & Martí, A. (2014). The feasibility of high-efficiency InAs/GaAs quantum dot intermediate band solar cells. Solar Energy Materials & Solar Cells, 130, 225–233.CrossRefGoogle Scholar
  42. 42.
    Smith, B. L., Slocum, M. A., Bittner, Z. S., Dai, Y., Nelson, G. T., Hellstroem, S. D., Tatavarti, R., Hubbard, S. M. (2016). Inverted growth evaluation for epitaxial lift off (ELO) quantum dot solar cell and enhanced absorption by back surface texturing. IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 1276–1281).Google Scholar
  43. 43.
    Cappelluti, F., Gioannini, M., Ghione, G., Khalili, A. (2016). Numerical study of thin-film quantum-dot solar cells combining selective doping and light-trapping approaches. IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 1282–1286).Google Scholar
  44. 44.
    Bennett, M. F., Bittner, Z. S., Forbes, D. V., Tatavarti, S. R., Phillip Ahrenkiel, S., Wibowo, A., Pan, N., Chern, K., & Hubbard, S. M. (2013). Epitaxial lift-off of quantum dot enhanced gaas single junction solar cells. Applied Physics Letters, 103, 213902.CrossRefGoogle Scholar
  45. 45.
    Sogabe, T., Shoji, Y., Mulder, P., Schermer, J., Tamayo, E., & Okada, Y. (2014). Enhancement of current collection in epitaxial lift-off InAs/GaAs quantum dot thin film solar cell and concentrated photovoltaic study. Applied Physics Letters, 105, 113904.CrossRefGoogle Scholar
  46. 46.
    Konagai, M., Sugimoto, M., & Takahashi, K. (1978). High efficiency GaAs thin film solar cells by peeled film technology. Journal of Crystal Growth, 45, 277–280.CrossRefGoogle Scholar
  47. 47.
    Yablonovitch, E., Gmitter, T., Harbison, J. P., & Bhat, R. (1987). Extreme selectivity in the lift-off of epitaxial GaAs films. Applied Physics Letters, 51, 2222–2224.CrossRefGoogle Scholar
  48. 48.
    Schermer, J. J., Bauhuis, G. J., Mulder, P., Meulemeesters, W. J., Haverkamp, E., Voncken, M. M. A. J., & Larsen, P. K. (2000). High rate epitaxial lift-off of InGaP films from GaAs substrates. Applied Physics Letters, 76, 2131–2133.CrossRefGoogle Scholar
  49. 49.
    Schermer, J. J., Mulder, P., Bauhuis, G. J., Voncken, M. M. A. J., Van Deelen, J., Haverkamp, E., & Larsen, P. K. (2005). Epitaxial lift-off for large area thin film III/V devices. Physica Status Solidi (a), 202, 501–508.CrossRefGoogle Scholar
  50. 50.
    Wu, X. S., Coldren, L. A., & Merz, J. L. (1985). Selective etching characteristics of HF for AlxGa1-xAs/GaAs. Electronics Letters, 21, 558–559.CrossRefGoogle Scholar
  51. 51.
    Voncken, M. M. A. J., Schermer, J. J., Bauhuis, G. J., Mulder, P., & Larsen, P. K. (2004). Multiple release layer study of the intrinsic lateral etch rate of the epitaxial lift-off process. Applied Physics A: Materials Science & Processing, 79, 1801–1807.CrossRefGoogle Scholar
  52. 52.
    Smeenk, N. J., Engel, J., Mulder, P., Bauhuis, G. J., Bissels, G. M. M. W., Schermer, J. J., Vlieg, E., & Kelly, J. J. (2013). Arsenic formation on GaAs during etching in HF solutions: Relevance for the epitaxial lift-off process. ECS Journal of Solid State Science and Technology, 2, P58–P65.CrossRefGoogle Scholar
  53. 53.
    Lee, K., Zimmerman, J. D., Xiao, X., Sun, K., & Forrest, S. R. (2012). Reuse of GaAs substrates for epitaxial lift-off by employing protection layers. Journal of Applied Physics, 111, 033527.CrossRefGoogle Scholar
  54. 54.
    Horng, R. H., Tseng, M. C., Wu, F. L., Li, C. H., Wu, C. H., & Yang, M. D. (2012). Thin film solar cells fabricated using cross-shaped pattern epilayer lift-off technology for substrate recycling applications. IEEE Transactions on Electron Devices, 59, 666–672.CrossRefGoogle Scholar
  55. 55.
    Adams, J., Elarde, V., Hains, A., Stender, C., Tuminello, F., Youtsey, C., Wibowo, A., & Osowski, M. (2012). Demonstration of multiple substrate reuses for inverted metamorphic solar cells. IEEE 38th Photovoltaic Specialists Conference (PVSC) (pp. 1–6).Google Scholar
  56. 56.
    Lee, K., Zimmerman, J. D., Hughes, T. W., & Forrest, S. R. (2014). Non-destructive wafer recycling for low-cost thin-film flexible optoelectronics. Advanced Functional Materials, 24, 4284–4291.CrossRefGoogle Scholar
  57. 57.
    Yablonovitch, E., Hwang, D. M., Gmitter, T. J., Florez, L. T., & Harbison, J. P. (1990). Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates. Applied Physics Letters, 56, 2419–2421.CrossRefGoogle Scholar
  58. 58.
    Van Niftrik, A. T., Schermer, J. J., Bauhuis, G. J., van Deelen, J., Mulder, P., & Larsen, P. K. (2007). The influence of in x Ga1–x as and GaAs1–y P y layers surrounding the AlAs release layer in the epitaxial lift-off process. Crystal Growth and Design, 7, 2472–2480.CrossRefGoogle Scholar
  59. 59.
    Omnes, F., Guillaume, J. C., Nataf, G., Jager-Waldau, D., Vennegues, P., & Gibart, P. (1996). Substrate free GaAs photovoltaic cells on Pd-coated silicon with a 20% AM1.5 efficiency. IEEE Transactions on Electron Devices, 43, 1806–1811.CrossRefGoogle Scholar
  60. 60.
    Lee, X. Y., Goertemiller, M., Boroditsky, M., Ragan, R., & Yablonovitch, E. (1997). Thin film GaAs solar cells on glass substrates by epitaxial liftoff. AIP Conference Proceedings 394, 719–727.Google Scholar
  61. 61.
    Schermer, J. J., Mulder, P., Bauhuis, G. J., Larsen, P. K., Oomen, G., & Bongers, E. (2005). Thin-film GaAs epitaxial lift-off solar cells for space applications. Progress in Photovoltaics: Research and Applications, 13, 587–596.CrossRefGoogle Scholar
  62. 62.
    Schumacher, H., Gmitter, T. J., LeBlanc, H. P., Bhat, R., Yablonovitch, E., & Koza, M. A. (1989). High-speed InP/GaInAs photodiode on sapphire substrate. Electronics Letters, 25, 1653–1654.CrossRefGoogle Scholar
  63. 63.
    Kobayashi, F., & Sekiguchi, Y. (1992). GaAs Schottky photodiode fabricated on glass substrate using epitaxial lift-off technique. Japanese Journal of Applied Physics, 31, L850.CrossRefGoogle Scholar
  64. 64.
    Schnitzer, I., Yablonovitch, E., Caneau, C., Gmitter, T. J., & Scherer, A. (1993). 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Applied Physics Letters, 63, 2174–2176.CrossRefGoogle Scholar
  65. 65.
    Sasaki, Y., Katayama, T., Koishi, T., Shibahara, K., Yokoyama, S., Miyazaki, S., & Hirose, M. (1999). High-speed GaAs epitaxial lift-off and bonding with high alignment accuracy using a sapphire plate. Journal of the Electrochemical Society, 146, 710–712.CrossRefGoogle Scholar
  66. 66.
    Yablonovitch, E., Kapon, E., Gmitter, T. J., Yun, C. P., & Bhat, R. (1989). Double heterostructure GaAs/AlGaAs thin film diode lasers on glass substrates. IEEE Photonics Technology Letters, 1, 41–42.CrossRefGoogle Scholar
  67. 67.
    Pollentier, I., Buydens, L., Van Daele, P., & Demeester, P. (1991). Fabrication of a GaAs-AlGaAs GRIN-SCH SQW laser diode on silicon by epitaxial lift-off. IEEE Photonics Technology Letters, 3, 115–117.CrossRefGoogle Scholar
  68. 68.
    Shah, D. M., Chan, W. K., Caneau, C., Gmitter, T. J., Song, J. I., Hong, B. P., Micelli, P. F., & De Rosa, F. (1995). Epitaxial lift-off GaAs HEMT’s. IEEE Transactions on Electron Devices, 42, 1877–1881.CrossRefGoogle Scholar
  69. 69.
    Morf, T., Biber, C., & Bachtold, W. (1998). Effects of epitaxial lift-off on the DC, RF, and thermal properties of MESFET’s on various host materials. IEEE Transactions on Electron Devices, 45, 1407–1413.CrossRefGoogle Scholar
  70. 70.
    Georgiou, G., Tyagi, H. K., Mulder, P., Bauhuis, G. J., Schermer, J. J., & Rivas, J. G. (2014). Photo-generated THz antennas. Scientific Reports, 4, 3584.CrossRefGoogle Scholar
  71. 71.
    Voncken, M. M. A. J., Schermer, J. J., Bauhuis, G. J., Van Niftrik, A. T. J., & Larsen, P. K. (2004). Strain-accelerated HF etching of AlAs for epitaxial lift-off. Journal of Physics: Condensed Matter, 16, 3585.Google Scholar
  72. 72.
    Bauhuis, G. J., Mulder, P., & Schermer, J. J. (2014). Thin-film iii–v solar cells using epitaxial lift-off. In X. Wang & Z. Wang (Eds.), High-efficiency solar cells (pp. 623–643). Cham: Springer.CrossRefGoogle Scholar
  73. 73.
    Voncken, M. M. A. J., Schermer, J. J., Van Niftrik, A. T. J., Bauhuis, G. J., Mulder, P., Larsen, P. K., Peters, T. P. J., De Bruin, B., Klaassen, A., & Kelly, J. J. (2004). Etching AlAs with HF for epitaxial lift-off applications. Journal of the Electrochemical Society, 151, G347–G352.CrossRefGoogle Scholar
  74. 74.
    Van Niftrik, A. T. J., Schermer, J. J., Bauhuis, G. J., Mulder, P., Larsen, P. K., & Kelly, J. J. (2007). A diffusion and reaction related model of the epitaxial lift-off process. Journal of the Electrochemical Society, 154, D629–D635.CrossRefGoogle Scholar
  75. 75.
    Voncken, M. M. A. J., Schermer, J. J., Maduro, G., Bauhuis, G. J., Mulder, P., & Larsen, P. K. (2002). Influence of radius of curvature on the lateral etch rate of the weight induced epitaxial lift-off process. Materials Science and Engineering: B, 95, 242–248.CrossRefGoogle Scholar
  76. 76.
    Van Niftrik, A. T. J., Schermer, J. J., Bauhuis, G. J., Mulder, P., Larsen, P. K., Van Setten, M. J., Attema, J. J., Tan, N. C. G., & Kelly, J. J. (2008). HF species and dissolved oxygen on the epitaxial lift-off process of GaAs using AlAsP release layers. Journal of the Electrochemical Society, 155, D35–D39.CrossRefGoogle Scholar
  77. 77.
    Tatavarti, R., Hillier, G., Martin, G., Wibowo, A., Navaratnarajah, R., Tuminello, F., Hertkorn, D., Disabb, M., Youtsey, C., McCallum, D., & Pan, N. (2009). Lightweight, low cost InGaP/GaAs dual-junction solar cells on 100 mm epitaxial liftoff (ELO) wafers. 34th IEEE Photovoltaic Specialists Conference (PVSC) (pp. 2065–2067).Google Scholar
  78. 78.
    Youtsey, C., Adams, J., Chan, R., Elarde, V., Hillier, G., Osowski, M., McCallum, D., Miyamoto, H., Pan, N., Stender, C., & Tatavarti, R. (2012). Epitaxial lift-off of large-area GaAs thin-film multi-junction solar cells. Proceedings of the CS MANTECH Conference.Google Scholar
  79. 79.
    Van Leest, R. H., Mulder, P., Gruginskie, N., van Laar, S. C., Bauhuis, G. J., Cheun, H., Lee, H., Yoon, W., van der Heijden, R., Bongers, E., & Vlieg, E. (2017). Temperature-induced degradation of thin-film III–V solar cells for space applications. IEEE Journal of Photovoltaics, 7, 702–708.CrossRefGoogle Scholar
  80. 80.
    Farah, J. (2012). Dry-epitaxial lift-off, integration, interconnect and encapsulation of foldable/rollable high efficiency solar cell modules. 38th IEEE Photovoltaic Specialists Conference (pp. 2868–2873).Google Scholar
  81. 81.
    Trautz, K. M., Jenkins, P. P., Walters, R. J., Scheiman, D., Hoheisel, R., Tatavarti, R., Chan, R., Miyamoto, H., Adams, J. G., Elarde, V. C., & Grimsley, J. (2012). Mobile solar power. IEEE Journal of Photovoltaics, 3, 535–541.CrossRefGoogle Scholar
  82. 82.
    Essig, S., Steiner, M. A., Allebé, C., Geisz, J. F., Paviet-Salomon, B., Ward, S., Descoeudres, A., LaSalvia, V., Barraud, L., Badel, N., & Faes, A. (2016). Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency. IEEE Journal of Photovoltaics, 6, 1012–1019.CrossRefGoogle Scholar
  83. 83.
    Hannappel, T., Sagol, B. E., Seidel, U., Szabo, N., Schwarzburg, K., Bauhuis, G. J., & Mulder, P. (2008). Measurement of an InGaAsP/InGaAs tandem solar cell under GaAs. 33rd IEEE Photovoltaic Specialists Conference (pp. 1–3).Google Scholar
  84. 84.
    Essig, S., Allebé, C., Remo, T., Geisz, J. F., Steiner, M. A., Horowitz, K., Barraud, L., Ward, J. S., Schnabel, M., Descoeudres, A., & Young, D. L. (2017). Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2, 17144.CrossRefGoogle Scholar
  85. 85.
    Schermer, J. J., Bauhuis, G. J., Mulder, P., Haverkamp, E. J., Van Deelen, J., Van Niftrik, A. T. J., & Larsen, P. K. (2006). Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off. Thin Solid Films, 511, 645–653.CrossRefGoogle Scholar
  86. 86.
    Bauhuis, G. J., Schermer, J. J., Mulder, P., Voncken, M. M. A. J., & Larsen, P. K. (2004). Thin film GaAs solar cells with increased quantum efficiency due to light reflection. Solar Energy Materials & Solar Cells, 83, 81–90.CrossRefGoogle Scholar
  87. 87.
    Tatavarti, R., Wibowo, A., Elarde, V., Tuminello, F., Pastor, R., Giannopoulos, T., Osowski, M., Chan, R., Youtsey, C., Hillier, G., & Pan, N. (2011). Large-area, epitaxial lift-off, inverted metamorphic solar cells. In 37th IEEE Photovoltaic Specialists Conference (pp. 1941–1944).Google Scholar
  88. 88.
    Asbeck, P. (1977). Self-absorption effects on the radiative lifetime in GaAs-GaAlAs double heterostructures. Journal of Applied Physics, 48, 820–822.CrossRefGoogle Scholar
  89. 89.
    Ahrenkiel, R. K., Dunlavy, D. J., Keyes, B., Vernon, S. M., Dixon, T. M., Tobin, S. P., Miller, K. L., & Hayes, R. E. (1989). Ultralong minority-carrier lifetime epitaxial GaAs by photon recycling. Applied Physics Letters, 55, 1088–1090.CrossRefGoogle Scholar
  90. 90.
    Parrott, J. E. (1993). Radiative recombination and photon recycling in photovoltaic solar cells. Solar Energy Materials & Solar Cells, 30, 221–231.CrossRefGoogle Scholar
  91. 91.
    Lush, G. B. (2009). B-coefficient in n-type GaAs. Solar Energy Materials & Solar Cells, 93, 1225–1229.CrossRefGoogle Scholar
  92. 92.
    Bauhuis, G. J., Mulder, P., Haverkamp, E. J., Huijben, J. C. C. M., & Schermer, J. J. (2009). 26.1% thin-film GaAs solar cell using epitaxial lift-off. Solar Energy Materials & Solar Cells, 93, 1488–1491.CrossRefGoogle Scholar
  93. 93.
    Geisz, J. F., Steiner, M. A., Garcia, I., Kurtz, S. R., & Friedman, D. J. (2013). Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Applied Physics Letters, 103, 041118.CrossRefGoogle Scholar
  94. 94.
    Steiner, M. A., Geisz, J. F., Garcia, I., Friedman, D. J., Duda, A., & Kurtz, S. R. (2013). Optical enhancement of the open-circuit voltage in high quality GaAs solar cells. Journal of Applied Physics, 113, 123109.CrossRefGoogle Scholar
  95. 95.
    Lumb, M. P., Steiner, M. A., Geisz, J. F., & Walters, R. J. (2014). Incorporating photon recycling into the analytical drift-diffusion model of high efficiency solar cells. Journal of Applied Physics, 116, 194504.CrossRefGoogle Scholar
  96. 96.
    Bauhuis, G., Mulder, P., Hu, Y. Y., & Schermer, J. (2016). Deep junction III–V solar cells with enhanced performance. Physica Status Solidi (a), 213, 2216–2222.CrossRefGoogle Scholar
  97. 97.
    Bailey, C. G., Forbes, D. V., Raffaelle, R. P., & Hubbard, S. M. (2011). Near 1 V open circuit voltage InAs/GaAs quantum dot solar cells. Applied Physics Letters, 98, 163105.CrossRefGoogle Scholar
  98. 98.
    Sablon, K. A., Little, J. W., Olver, K. A., Wang, Z. M., Dorogan, V. G., Mazur, Y. I., Salamo, G. J., & Towner, F. J. (2010). Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. Journal of Applied Physics, 108(74305).Google Scholar
  99. 99.
    Lam, P., Wu, J., Tang, M., Jiang, Q., Hatch, S., Beanland, R., Wilson, J., Allison, R., & Liu, H. (2014). Submonolayer InGaAs/GaAs quantum dot solar cells. Solar Energy Materials & Solar Cells, 126, 83–87.CrossRefGoogle Scholar
  100. 100.
    Tukiainen, A., Lyytikäinen, J., Aho, T., Halonen, E., Raappana, M., Cappelluti, F., & Guina, M. (2018). Comparison of ‘shallow’ and ‘deep’ junction architectures for MBE-grown InAs/GaAs quantum dot solar cells. IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 2950–2952).Google Scholar
  101. 101.
    Levy, M. Y., & Honsberg, C. (2008). Solar cell with an intermediate band of finite width. Physical Review B, 78, 165122.CrossRefGoogle Scholar
  102. 102.
    Cuadra, L., Martí, A., & Luque, A. (2004). Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell. IEEE Transactions on Electron Devices, 51, 1002–1007.CrossRefGoogle Scholar
  103. 103.
    Strandberg, R., & Reenaas, T. (2011). Optimal filling of the intermediate band in idealized intermediate-band solar cells. IEEE Transactions on Electron Devices, 58, 2559–2565.CrossRefGoogle Scholar
  104. 104.
    Yoshida, K., Okada, Y., & Sano, N. (2010). Self-consistent simulation of intermediate band solar cells: Effect of occupation rates on device characteristics. Applied Physics Letters, 97, 133503.CrossRefGoogle Scholar
  105. 105.
    Lin, A. S., & Phillips, J. D. (2009). Drift-diffusion modeling for impurity photovoltaic devices. IEEE Transactions on Electron Devices, 56, 3168–3174.CrossRefGoogle Scholar
  106. 106.
    Strandberg, R., & Reenaas, T. W. (2011). Drift-diffusion model for intermediate band solar cells including photofilling effects. Progress in Photovoltaics: Research and Applications, 19, 21–32.CrossRefGoogle Scholar
  107. 107.
    Zhu, L., Akiyama, H., & Kanemitsu, Y. (2018). Intrinsic and extrinsic drops in open-circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host materials. Scientific Reports, 8, 11704.CrossRefGoogle Scholar
  108. 108.
    Aeberhard, U. (2013). Simulation of nanostructure-based high-efficiency solar cells: Challenges, existing approaches, and future directions. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1–11.CrossRefGoogle Scholar
  109. 109.
    Walker, A. W., Thériault, O., & Hinzer, K. (2014). The dependence of multijunction solar cell performance on the number of quantum dot layers. IEEE Journal of Quantum Electronics, 50, 198–203.CrossRefGoogle Scholar
  110. 110.
    Gioannini, M., Cedola, A. P., Di Santo, N., Bertazzi, F., & Cappelluti, F. (2013). Simulation of quantum dot solar cells including carrier intersubband dynamics and transport. IEEE Journal of Photovoltaics, 3, 1271–1278.CrossRefGoogle Scholar
  111. 111.
    Cappelluti, F., Gioannini, M., & Khalili, A. (2016). Impact of doping on InAs/GaAs quantum-dot solar cells: A numerical study on photovoltaic and photoluminescence behavior. Solar Energy Materials & Solar Cells, 157, 209–220.CrossRefGoogle Scholar
  112. 112.
    Cédola, A. P., Kim, D., Tibaldi, A., Tang, M., Khalili, A., Wu, J., Liu, H., & Cappelluti, F. (2018). Physics-based modeling and experimental study of si-doped InAs/GaAs quantum dot solar cells. International Journal of Photoenergy, 2018, 7215843.CrossRefGoogle Scholar
  113. 113.
    Khalili, A., Tibaldi, A., Elsehrawy, F., Cappelluti, F. (2019). Multiscale device simulation of quantum dot solar cells. In Physics, simulation, and photonic engineering of photovoltaic devices VIII (Vol. 10913, p. 109131N). International Society for Optics and Photonics.Google Scholar
  114. 114.
    Jolley, G., Fu, L., Lu, H. F., Tan, H. H., & Jagadish, C. (2013). The role of intersubband optical transitions on the electrical properties of ingaas/gaas quantum dot solar cells. Progress in Photovoltaics: Research and Applications, 21, 736–746.Google Scholar
  115. 115.
    Khalili, A., & Cappelluti, F.(2018). Modeling of type-ii quantum dot intermediate band solar cells accounting for thermal and optical intersubband transitions. International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD) (pp. 139–140).Google Scholar
  116. 116.
    Hwang, J., Martin, A. J., Millunchick, J. M., & Phillips, J. D. (2012). Thermal emission in type-ii gasb/gaas quantum dots and prospects for intermediate band solar energy conversion. Journal of Applied Physics, 111, 074514.CrossRefGoogle Scholar
  117. 117.
    Williamson, A. J., Wang, L. W., & Zunger, A. (2000). Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Physical Review B, 62, 12963.CrossRefGoogle Scholar
  118. 118.
    King, R. R., Bhusari, D., Boca, A., Larrabee, D., Liu, X. Q., Hong, W., Fetzer, C. M., Law, D. C., & Karam, N. H. (2011). Band gap-voltage offset and energy production in next-generation multijunction solar cells. Progress in Photovoltaics: Research and Applications, 19, 797–812.CrossRefGoogle Scholar
  119. 119.
    Ekins-Daukes, N., Pusch, A. (2018). The use and abuse of Woc as a figure of merit. Proceedings of PVSEC 2018.Google Scholar
  120. 120.
    Nuntawong, N., Tatebayashi, J., Wong, P. S., & Huffaker, D. L. (2007). Localized strain reduction in strain-compensated In As/Ga As stacked quantum dot structures. Applied Physics Letters, 90, 163121.CrossRefGoogle Scholar
  121. 121.
    Bowen, D. K., & Tanner, B. K. (2005). High resolution X-ray diffractometry and topography. Boca Raton, FL: CRC press.Google Scholar
  122. 122.
    Fewster, P. F. (1986). X-ray diffraction from multiple quantum well structures. Philips Journal of Research, 41, 268–289.Google Scholar
  123. 123.
    Gee, J. M. (1988). The effect of parasitic absorption losses on light trapping in thin silicon solar cells. Proceedings of the 2016 IEEE Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference 1, 549–554.Google Scholar
  124. 124.
    Green, M. A. (2002). Lambertian light trapping in textured solar cells and light-emitting diodes: Analytical solutions. Progress in Photovoltaics: Research and Applications, 10, 235–241.CrossRefGoogle Scholar
  125. 125.
    Weber, M. J. (2002). Handbook of optical materials. Boca Raton, FL: CRC press.CrossRefGoogle Scholar
  126. 126.
    Tsai, C., Liu, G., Fan, G., & Lee, Y. (2010). Substrate-free large gap InGaN solar cells with bottom reflector. Solid-State Electronics, 54, 541–544.CrossRefGoogle Scholar
  127. 127.
    Vandamme, N., Hung-Ling, C., Gaucher, A., Behaghel, B., Lemaitre, A., Cattoni, A., Dupuis, C., Bardou, N., Guillemoles, J., & Collin, S. (2015). Ultrathin GaAs solar cells with a silver back mirror. IEEE Journal of Photovoltaics, 5, 565–570.CrossRefGoogle Scholar
  128. 128.
    Baca, A. G., & Ashby, C. I. (2005). Fabrication of GaAs devices. London: IET.CrossRefGoogle Scholar
  129. 129.
    Van Leest, R. H., Bauhuis, G. J., Mulder, P., van der Heijden, R., Bongers, E., Vlieg, E., & Schermer, J. J. (2015). Effects of copper diffusion in gallium arsenide solar cells for space applications. Solar Energy Materials & Solar Cells, 140, 45–53.CrossRefGoogle Scholar
  130. 130.
    Van Leest, R. H., de Kleijne, K., Bauhuis, G. J., Mulder, P., Cheun, H., Lee, H., Yoon, W., van der Heijden, R., Bongers, E., Vlieg, E., & Schermer, J. J. (2016). Degradation mechanism (s) of GaAs solar cells with Cu contacts. Physical Chemistry Chemical Physics, 18, 10232–10240.CrossRefGoogle Scholar
  131. 131.
    Aho, T., Aho, A., Tukiainen, A., Polojärvi, V., Salminen, T., Raappana, M., & Guina, M. (2016). Enhancement of photocurrent in GaInNAs solar cells using Ag/Cu double-layer back reflector. Applied Physics Letters, 109, 251104.CrossRefGoogle Scholar
  132. 132.
    ASTM Standard (2008). Standard tables for reference solar spectral irradiances: Direct normal and hemispherical on 37° tilted surface (ASTM International, Technical Report 12).Google Scholar
  133. 133.
    Stareev, G., Künzel, H., & Dortmann, G. (1993). A controllable mechanism of forming extremely low-resistance nonalloyed ohmic contacts to group III-V compound semiconductors. Journal of Applied Physics, 74, 7344–7356.CrossRefGoogle Scholar
  134. 134.
    Akdogan, I. G., & Parker, M. A. (2005). Au-Cu ohmic contacts for p+ GaAs. Electrochemical and Solid-State Letters, 8, G106–G108.CrossRefGoogle Scholar
  135. 135.
    Inoue, T., Watanabe, K., Toprasertpong, K., Fujii, H., Sugiyama, M., & Nakano, Y. (2015). Enhanced light trapping in multiple quantum wells by thin-film structure and backside grooves with dielectric interface. IEEE Journal of Photovoltaics, 5, 697–703.CrossRefGoogle Scholar
  136. 136.
    Musu, A., Cappelluti, F., Aho, T., Polojärvi, V., Niemi, T., & Guina, M. (2016). Nanostructures for light management in thin-film GaAs quantum dot solar cells. OSA Light, Energy and the Environment Congress (pp. JW4A-45).Google Scholar
  137. 137.
    Mokkapati, S., & Catchpole, K. R. (2012). Nanophotonic light trapping in solar cells. Journal of Applied Physics, 112, 101101.CrossRefGoogle Scholar
  138. 138.
    Palanchoke, U., Jovanov, V., Kurz, H., Obermeyer, P., Stiebig, H., & Knipp, D. (2012). Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts. Optics Express, 20, 6340–6347.CrossRefGoogle Scholar
  139. 139.
    Tommila, J., Polojärvi, V., Aho, A., Tukiainen, A., Viheriälä, J., Salmi, J., Schramm, A., Kontio, J., Turtiainen, A., & Niemi, T. (2010). Nanostructured broadband antireflection coatings on AlInP fabricated by nanoimprint lithography. Solar Energy Materials and Solar Cells, 94, 1845–1848.CrossRefGoogle Scholar
  140. 140.
    RSoft Design Group. (n.d.). DiffractMOD. Retrieved from https://www.synopsys.com/optical-solutions/rsoft/passive-device-diffractMOD.html.
  141. 141.
    Elsehrawy, F., Cappelluti, F., Aho, T., Niemi, T., Polojärvi, V., Guina, M. (2017). Back grating optimization for light trapping in thin-film quantum dot solar cells. 19th Italian National Conference on Photonic Technologies 34.Google Scholar
  142. 142.
    Elsehrawy, F., Aho, T., Niemi, T., Guina, M., & Cappelluti, F. (2018, November). Improved light trapping in quantum dot solar cells using double-sided nanostructuring. In Optics and photonics for energy and the environment (pp. JM4A-5). Optical Society of America.Google Scholar
  143. 143.
    Aho, T., Guina, M., Elsehrawy, F., Cappelluti, F., Raappana, M., Tukiainen, A., Alam, A. K., Vartiainen, I., Kuittinen, M., & Niemi, T. (2018). Comparison of metal/polymer back reflectors with half-sphere, blazed, and pyramid gratings for light trapping in III-V solar cells. Optics Express, 26, A331–A340.CrossRefGoogle Scholar
  144. 144.
    Ganapati, V., Steiner, M. A., & Yablonovitch, E. (2016). The voltage boost enabled by luminescence extraction in solar cells. IEEE Journal of Photovoltaics, 6, 801–809.CrossRefGoogle Scholar
  145. 145.
    Gruginskie, N., van Laar, S. C. W., Bauhuis, G., Mulder, P., van Eerden, M., Vlieg, E., & Schermer, J. J. (2018). Increased performance of thin-film GaAs solar cells by rear contact/mirror patterning. Thin Solid Films, 660, 10–18.CrossRefGoogle Scholar
  146. 146.
    van Eerden, M., Bauhuis, G., Mulder, P., Gruginskie, N., Passoni, M., Andreani, L. C., Vlieg, E., & Schermer, J. J. (2019). A facile light trapping approach for ultra-thin GaAs solar cells using wet chemical etching. Progress in Photovoltaics. Submitted for publication.Google Scholar
  147. 147.
    Stender, C. L., Adams, J., Elarde, V., Major, T., Miyamoto, H., Osowski, M., Pan, N., Tatavarti, R., Tuminello, F., Wibowo, A., & Youtsey, C. (2015). Flexible and lightweight epitaxial lift-off GaAs multi-junction solar cells for portable power and UAV applications. IEEE 42nd Photovoltaic Specialist Conference (PVSC) (pp. 1–4).Google Scholar
  148. 148.
    Scheiman, D., Hoheisel, R., Edwards, D. J., Paulsen, A., Lorentzen, J., Jenkins, P., Caruthers, S., Carter, S., & Walters, R. (2016). A path toward enhanced endurance of a UAV using IMM solar cells. IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 1095–1100).Google Scholar
  149. 149.
    PV Magazine. (n.d.). Audi, Hanergy unit to jointly develop PV for vehicles. Retrieved from http://pv-magazine.com/2017/08/23/audi-hanergy-unit-to-jointly-develop-pv-for-vehicles.
  150. 150.
    US Department of Energy, Office of Energy Efficiency and Renewable Energy. (n.d.). High-efficiency, low-cost, one-sun, III-V photovoltaics. Retrieved from http://energy.gov/eere/solar/project-profile-high-efficiency-low-cost-one-sun-iii-v-photovoltaics.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electronics and TelecommunicationsPolitecnico di TorinoTorinoItaly
  2. 2.Optoelectronics Research Centre, Physics Unit, Faculty of Engineering and Natural SciencesTampere UniversityTampereFinland
  3. 3.Institute for Molecules and MaterialsRadboud UniversityNijmegenThe Netherlands
  4. 4.tf2 devices B.V.NijmegenThe Netherlands

Personalised recommendations