Aldenderfer, M.S., Blashfield, R.: Cluster Analysis. Beverly Hills: Sage Publications, Thousand Oaks (1984)
CrossRef
Google Scholar
Batagelj, V., Mrvar, A.: Pajek data sets (2003). http://pajek.imfm.si/doku.php?id=data:index
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River (1998)
Google Scholar
Baur, M., Benkert, M., Brandes, U., Cornelsen, S., Gaertler, M., Köpf, B., Lerner, J., Wagner, D.: Visone Software for Visual Social Network Analysis. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 463–464. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_47
CrossRef
Google Scholar
Behrisch, M., Blumenschein, M., Kim, N.W., Shao, L., El-Assady, M., Fuchs, J., Seebacher, D., Diehl, A., Brandes, U., Pfister, H., Schreck, T., Weiskopf, D., Keim, D.A.: Quality metrics for information visualization. In: Computer Graphics Forum, vol. 37, pp. 625–662. Wiley Online Library (2018)
Google Scholar
Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_6
CrossRef
MATH
Google Scholar
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley-Interscience, New York (1991)
Google Scholar
David, A.: Tulip. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 435–437. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_34
CrossRef
Google Scholar
Eades, P., Hong, S.H., Nguyen, A., Klein, K.: Shape-based quality metrics for large graph visualization. J. Graph Algorithms Appl. 21(1), 29–53 (2017)
MathSciNet
CrossRef
Google Scholar
Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz— open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_57
CrossRef
MATH
Google Scholar
Estivill-Castro, V.: Why so many clustering algorithms: a position paper. SIGKDD Explor. Newsl. 4(1), 65–75 (2002). https://doi.org/10.1145/568574.568575
CrossRef
Google Scholar
Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983). https://doi.org/10.1080/01621459.1983.10478008
CrossRef
MATH
Google Scholar
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw.: Practice Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.4380211102
Google Scholar
Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25
CrossRef
MATH
Google Scholar
Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_29
CrossRef
MATH
Google Scholar
Hu, Y.: Efficient, high-quality force-directed graph drawing. Math. J. 10(1), 37–71 (2005)
Google Scholar
Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: 2008 IEEE Pacific Visualization Symposium, pp. 41–46. IEEE (2008)
Google Scholar
Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075
CrossRef
MATH
Google Scholar
Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–245. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_20
CrossRef
MATH
Google Scholar
Koren, Y.: Drawing graphs by eigenvectors: theory and practice. Comput. Math. Appl. 49(11–12), 1867–1888 (2005). https://doi.org/10.1016/j.camwa.2004.08.015
MathSciNet
CrossRef
MATH
Google Scholar
Kruiger, J.F.: tsnet (2017). https://github.com/HanKruiger/tsNET/
Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.: Graph layouts by t-SNE. Comput. Graph. Forum 36(3), 283–294 (2017). https://doi.org/10.1111/cgf.13187
CrossRef
Google Scholar
Leskovec, J., Krevl, A.: SNAP Datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)
Google Scholar
MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)
Google Scholar
Noack, A.: An energy model for visual graph clustering. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 425–436. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7_40
CrossRef
MATH
Google Scholar
Nocaj, A., Ortmann, M., Brandes, U.: Untangling the hairballs of multi-centered, small-world online social media networks. J. Graph Algorithms Appl. 19(2), 595–618 (2015). https://doi.org/10.7155/jgaa.00370
MathSciNet
CrossRef
MATH
Google Scholar
Ortmann, M., Klimenta, M., Brandes, U.: A sparse stress model. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 18–32. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_2
CrossRef
Google Scholar
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)
Google Scholar
Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_67
CrossRef
Google Scholar
Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021827
CrossRef
Google Scholar
Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.10482356
CrossRef
Google Scholar
Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)
Google Scholar
Saket, B., Simonetto, P., Kobourov, S.: Group-level graph visualization taxonomy. CoRR abs/1403.7421 (2014)
Google Scholar
Sedlmair, M., Tatu, A., Munzner, T., Tory, M.: A taxonomy of visual cluster separation factors. Comput. Graph. Forum 31(3pt4), 1335–1344 (2012). https://doi.org/10.1111/j.1467-8659.2012.03125.x
CrossRef
Google Scholar
Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3(Dec), 583–617 (2002)
Google Scholar
Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17(4), 401–419 (1952). https://doi.org/10.1007/BF02288916
MathSciNet
CrossRef
Google Scholar
Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11(Oct), 2837–2854 (2010)
Google Scholar
Wiese, R., Eiglsperger, M., Kaufmann, M.: yfiles - visualization and automatic layout of graphs. In: Jünger, M., Mutzel, P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 173–191. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18638-7_8
CrossRef
Google Scholar
Zitnik, M., Sosič, R., Maheshwari, S., Leskovec, J.: BioSNAP Datasets: Stanford biomedical network dataset collection, August 2018. http://snap.stanford.edu/biodata