Abstract
Fire danger rating systems are cornerstones of forest and land fire management. Different systems are used in different fire prone regions of the world, but all require daily inputs of the weather conditions most important in influencing fuel moisture and potential fire behavior. Because these systems typically have a memory, inaccurate weather data can lead to persistently inaccurate fire danger information. This is particularly the case for precipitation, due to its event-driven nature and complex spatial patterns. This chapter describes different approaches to estimating precipitation for the purposes of fire danger rating, focusing on using satellite precipitation estimates for calculations of the Fire Weather Index System, the most widely used fire danger rating system in the world. Comparisons are made between Fire Weather Index calculations for severe fire events in Canada, Chile, Greece and Indonesia, to illustrate the potential benefits of satellite precipitation for fire management in four very different fire environments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M., & Kolden, C. A. (2018). Global patterns of interannual climate-fire relationships. Global Change Biology, 24, 5164–5175. https://doi.org/10.1111/gcb.14405.
Abbott, K. N., Leblon, B., Staples, G. C., Maclean, D. A., & Alexander, M. E. (2007). Fire danger monitoring using RADARSAT-1 over northern boreal forests. International Journal of Remote Sensing, 28, 1317–1338. https://doi.org/10.1080/01431160600904956.
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R. R., Xie, P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D. T., Gruber, A., Susskind, J., Arkin, P. A., & Nelkin, E. (2003). The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.
Aguado, I., Chuvieco, E., Martin, P., & Salas, J. (2003). Assessment of forest fire danger conditions in southern Spain from NOAA images and meteorological indices. International Journal of Remote Sensing, 24, 1653–1668. https://doi.org/10.1080/01431160210144688.
Alexander, M. E., & W. J. de Groot (1988). Fire behavior in jack pine stands as related to the Canadian Forest Fire Weather Index (FWI) System. Canadian Forestry Service, Northwest Region. Available at https://cfs.nrcan.gc.ca/publications?id=24310, last accessed 28 Nov. 2018.
Amiro, B. D., Todd, J. B., Wotton, B. M., Logan, K. A., Flannigan, M. D., Stocks, B. J., Mason, J. A., Martell, D. L., & Hirsch, K. G. (2001). Direct carbon emissions from Canadian forest fires, 1959-1999. Canadian Journal of Forest Research, 31, 512–525. https://doi.org/10.1139/x00-197.
Anonymous. (2017). Spreading like wildfire. Nature Climate Change, 7, 755. https://doi.org/10.1038/nclimate3432.
Athanasopoulou, E., Rieger, D., Walter, C., Vogel, H., Karali, A., Hatzaki, M., Gerasopoulos, E., Vogel, B., Giannakopoulos, C., Gratsea, M., & Roussos, A. (2014). Fire risk, atmospheric chemistry and radiative forcing assessment of wildfires in eastern Mediterranean. Atmospheric Environment, 95, 113–125. https://doi.org/10.1016/j.atmosenv.2014.05.077.
Beck, H. E., van Dijk, A. I. J. M., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., & de Roo, A. (2017). MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences, 21, 589–615. https://doi.org/10.5194/hess-21-589-2017.
Bedia, J., Herrera, S., Gutierrez, J. M., Zavala, G., Urbieta, I. R., & Moreno, J. M. (2012). Sensitivity of fire weather index to different reanalysis products in the Iberian Peninsula. Natural Hazards and Earth System Sciences, 12, 699–708. https://doi.org/10.5194/nhess-12-699-2012.
Bedia, J., Herrera, S., Gutierrez, J. M., Benali, A., Brands, S., Mota, B., & Moreno, J. M. (2015). Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology, 214, 369–379. https://doi.org/10.1016/j.agrformet.2015.09.002.
Bourgeau-Chavez, L. L., Kasischke, E. S., & Rutherford, M. D. (1999). Evaluation of ERS SAR data for prediction of fire danger in a boreal region. International Journal of Wildland Fire, 9, 183–194. https://doi.org/10.1071/WF00009.
Bourgeau-Chavez, L. L., Garwood, G., Riordan, K., Cella, B., Alden, S., Kwart, M., & Murphy, K. (2007). Improving the prediction of wildfire potential in boreal Alaska with satellite imaging radar. Polar Record, 43, 321–330. https://doi.org/10.1017/S0032247407006535.
Bourgeau-Chavez, L. L., Leblon, B., Charbonneau, F., & Buckley, J. R. (2013). Evaluation of polarimetric Radarsat-2 SAR data for development of soil moisture retrieval algorithms over a chronosequence of black spruce boreal forests. Remote Sensing of Environment, 132, 71–85. https://doi.org/10.1016/j.rse.2013.01.006.
Bowman, D., Williamson, G. J., Abatzoglou, J. T., Kolden, C. A., Cochrane, M. A., & Smith, A. M. S. (2017). Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution, 1. https://doi.org/10.1038/s41559-016-0058.
Bowman, D. M. J. S., Moreira-Muñoz, A., Kolden, C. A., Chávez, R. O., Muñoz, A. A., Salinas, F., González-Reyes, Á., Rocco, R., de la Barrera, F., Williamson, G. J., Borchers, N., Cifuentes, L. A., Abatzoglou, J. T., & Johnston, F. H. (2018). Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio. https://doi.org/10.1007/s13280-018-1084-1.
Burki, T. K. (2017). The pressing problem of Indonesia’s forest fires. The Lancet Respiratory Medicine, 5, 685–686. https://doi.org/10.1016/S2213-2600(17)30301-6.
Cantin, A. (2016). Fire weather index system and fire behaviour prediction system calculations. Comprehensive R Archive Network. Available from https://cran.r-project.org/web/packages/cffdrs/index.html, last accessed 28 Nov. 2018.
Carlson, J. D., & Burgan, R. E. (2003). Review of users’ needs in operational fire danger estimation: The Oklahoma example. International Journal of Remote Sensing, 24, 1601–1620. https://doi.org/10.1080/01431160210144651.
CCFM (2018). National Forestry Database. National forestry database, Canadian Council of Forest Forest Ministers. Available at http://nfdp.ccfm.org/en/data/fires.php, last accessed 28 Nov. 2018.
Chen, Y., Morton, D. C., Jin, Y., Collatz, G. J., Kasibhatla, P. S., van der Werf, G. R., DeFries, R. S., & Randerson, J. T. (2013). Long-term trends and interannual variability of forest, savanna and agricultural fires in South America. Carbon Management, 4, 617–638. https://doi.org/10.4155/cmt.13.61.
Chowdhury, E. H., & Hassan, Q. K. (2015). Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 224–236. https://doi.org/10.1016/j.isprsjprs.2014.03.011.
de Groot, W. J., & Flannigan, M. D. (2014). Climate change and early warning systems for wildland fire. In Z. Zommers & A. Singh (Eds.), Reducing disaster: Early warning systems for climate change (pp. 127–151). Springer. https://doi.org/10.1007/978-94-017-8598-3_7.
de Groot, W. J., Field, R. D., Brady, M. A., Roswintiarti, O., & Mohamad, M. (2007). Development of the Indonesian and Malaysian fire danger rating systems. Mitigation and Adaptation Strategies for Global Change, 12, 165–180. https://doi.org/10.1007/s11027-006-9043-8.
de Groot, W. J., Wotton, B. M., & Flannigan, M. D. (2015). Wildland fire danger rating and early warning systems. In J. F. Shroder & D. Paton (Eds.), Wildfire hazards, risks and disasters (pp. 207–228). Amsterdam: Elsevier. ISBN: 9780124096011.
Di Giuseppe, F., Remy, S., Pappenberger, F., & Wetterhall, F. (2017). Improving Forecasts of Biomass Burning Emissions with the Fire Weather Index. Journal of Applied Meteorology and Climatology, 56, 2789–2799. https://doi.org/10.1175/jamc-d-16-0405.1.
Di Giuseppe, F., Remy, S., Pappenberger, F., & Wetterhall, F. (2018). Using the Fire Weather Index (FWI) to improve the estimation of fire emissions from fire radiative power (FRP) observations. Atmospheric Chemistry and Physics, 18, 5359–5370. https://doi.org/10.5194/acp-18-5359-2018.
Dimitrakopoulos, A. P., Bemmerzouk, A. M., & Mitsopoulos, I. D. (2011). Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment. Meteorological Applications, 18, 83–93. https://doi.org/10.1002/met.214.
Dowdy, A. J., Mills, G. A., Finkele, K., & de Groot, W. J. (2009). Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index. CAWCR Technical Report, 10, 84 pp. Available at http://www.cawcr.gov.au/technical-reports/CTR_010.pdf, last accessed 28 Nov. 2018.
Fang, L., Yang, J., Zu, J., Li, G., & Zhang, J. (2015). Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. Forest Ecology and Management, 356, 2–12. https://doi.org/10.1016/j.foreco.2015.01.011.
FAO. (2007). Fire management – Global Assessment 2006. FAO Forestry Paper, 151, 135 pp. Available at http://www.fao.org/docrep/009/a0969e/a0969e00.htm, last accessed 28 Nov. 2018.
Field, R. D., & Shen, S. S. P. (2008). Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. Journal of Geophysical Research, 113, 17. https://doi.org/10.1029/2008JG000694.
Field, R. D., Spessa, A. C., Aziz, N. A., Camia, A., Cantin, A., Carr, R., de Groot, W. J., Dowdy, A. J., Flannigan, M. D., Manomaiphiboon, K., Pappenberger, F., Tanpipat, V., & Wang, X. (2015). Development of a global fire weather database. Natural Hazards and Earth System Sciences, 15, 1407–1423. https://doi.org/10.5194/nhess-15-1407-2015.
Field, R. D., van der Werf, G. R., Fanin, T., Fetzer, E. J., Fuller, R., Jethva, H., Levy, R., Livesey, N. J., Luo, M., Torres, O., & Worden, H. M. (2016). Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. PNAS, 113, 9204–9209. https://doi.org/10.1073/pnas.1524888113.
Fiorucci, P., Gaetani, F., Lanorte, A., & Lasaponara, R. (2007). Dynamic fire danger mapping from satellite imagery and meteorological forecast data. Earth Interactions, 11, 7. https://doi.org/10.1175/EI199.1.
Flannigan, M. D., & Wotton, B. M. (1989). A study of interpolation methods for forest fire danger rating in Canada. Canadian Journal of Forest Research, 19, 1059–1066. https://doi.org/10.1139/x89-161.
Flannigan, M. D., Wotton, B. M., & Ziga, S. (1998). A study on the interpolation of fire danger using radar precipitation estimates. International Journal of Wildland Fire, 8, 217–225. https://doi.org/10.1071/WF9980217.
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M., & Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30, 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1.
Gould, J. S., Patriquin, M. N., Wang, S., McFarlane, B. L., & Wotton, B. M. (2013). Economic evaluation of research to improve the Canadian forest fire danger rating system. Forestry, 86, 317–329. https://doi.org/10.1093/forestry/cps082.
Han, K. S., Viau, A., & Anctil, F. (2003). High-resolution forest fire weather index computations using satellite remote sensing. Canadian Journal of Forest Research, 33, 1134–1143. https://doi.org/10.1139/x03-014.
Hanes, C. C., Jain, P., Flannigan, M. D., Fortin, V., & Roy, G. (2017). Evaluation of the Canadian Precipitation Analysis (CaPA) to improve forest fire danger rating. International Journal of Wildland Fire, 26, 509–522. https://doi.org/10.1071/WF16170.
Holgate, C. M., van Dijk, A. I. J. M., Cary, G. J., & Yebra, M. (2017). Using alternative soil moisture estimates in the McArthur Forest Fire Danger Index. International Journal of Wildland Fire, 26, 806–819. https://doi.org/10.1071/WF16217.
Horel, J. D., Ziel, R., Galli, C., Pechmann, J., & Dong, X. (2014). An evaluation of fire danger and behaviour indices in the Great Lakes region calculated from station and gridded weather information. International Journal of Wildland Fire, 23, 202–214. https://doi.org/10.1071/WF12186.
Huffman, G. J., Adler, R. F., Morrissey, M. M., Bolvin, D. T., Curtis, S., Joyce, R., McGavock, B., & Susskind, J. (2001). Global precipitation at one-degree daily resolution from multisatellite observations. Journal of Hydrometeorology, 2, 36–50. https://doi.org/10.1175/1525-7541(2001)0022.0.CO;2.
Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Adler, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55. https://doi.org/10.1175/JHM560.1.
Huffman, G. J., Bolvin, D. T., Braithwaite, D., Hsu, K.-L., Joyce, R., Kidd, C., Nelkin, E. J., Sorooshian, S., Tan, J., & Xie, P. (2018). Algorithm theoretical basis document (ATBD) version 5.2 for NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG). NASA 34 pp. Available at https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_ATBD_V5.pdf, last accessed 28 Nov. 2018.
Huijnen, V., Wooster, M. J., Kaiser, J. W., Gaveau, D. L. A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B., & van Weele, M. (2016). Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Scientific Reports, 6, 26886. https://doi.org/10.1038/srep26886.
Jain, P., & Flannigan, M. D. (2017). Comparison of methods for spatial interpolation of fire weather in Alberta, Canada. Canadian Journal of Forest Research, 47, 1646–1658. https://doi.org/10.1139/cjfr-2017-0101.
Jang, J. D., Viau, A. A., & Anctil, F. (2006). Thermal-water stress index from satellite images. International Journal of Remote Sensing, 27, 1619–1639. https://doi.org/10.1080/01431160500509194.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J., & Bowman, D. M. J. S. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6, 7537. https://doi.org/10.1038/ncomms8537.
Karali, A., Hatzaki, M., Giannakopoulos, C., Roussos, A., Xanthopoulos, G., & Tenentes, V. (2014). Sensitivity and evaluation of current fire risk and future projections due to climate change: The case study of Greece. Natural Hazards and Earth System Sciences, 14, 143–153. https://doi.org/10.5194/nhess-14-143-2014.
Khaykin, S. M., Godin-Beekmann, S., Hauchecorne, A., Pelon, J., Ravetta, F., & Keckhut, P. (2018). Stratospheric smoke with unprecedentedly high backscatter observed by lidars above southern France. Geophysical Research Letters, 45, 1639–1646. https://doi.org/10.1002/2017GL076763.
Kidd, C., & Levizzani, V. (2011). Status of satellite precipitation retrievals. Hydrology and Earth System Sciences, 15, 1109–1116. https://doi.org/10.5194/hess-15-1109-2011.
Lawson, B. D., & Armitage, O. B. (2008). Weather guide for the Canadian Forest Fire Danger Rating System. Canadian Forest Service, 73 pp. Available at https://cfs.nrcan.gc.ca/publications?id=29152, last accessed 28 Nov. 2018.
Leblon, B., Alexander, M., Chen, J., & White, S. (2001). Monitoring fire danger of northern boreal forests with NOAA-AVHRR NDVI images. International Journal of Remote Sensing, 22, 2839–2846. https://doi.org/10.1080/01431160110034663.
Leblon, B., Kasischke, E., Alexander, M., Doyle, M., & Abbott, M. (2002). Fire danger monitoring using ERS-1 SAR images in the case of northern boreal forests. Natural Hazards, 27, 231–255. https://doi.org/10.1023/A:1020375721520.
Leblon, B., San-Miguel-Ayanz, J., Bourgeau-Chavez, L., & Kong, M. (2016). Remote sensing of wildfires. In N. Baghdadi & M. Zribi (Eds.), Land surface remote sensing: Environment and risks (pp. 55–95). Dordrecht: Elsevier. 9780081012659.
Lee, B. S., Alexander, M. E., Hawkes, B. C., Lynham, T. J., Stocks, B. J., & Englefield, P. (2002). Information systems in support of wildland fire management decision making in Canada. Computers and Electronics in Agriculture, 37, 185–198. https://doi.org/10.1016/S0168-1699(02)00120-5.
Lekkas, E., Voulgaris, N., & Lozios, S. (2018). The July 2018 Attica (Central Greece) Wildfires – Scientific Report (Version 1.3). Newsletter of Environmental, Disaster and Crisis Management Strategies, National and Kapodistrian University of Athens. Available at https://edcm.edu.gr/images/docs/2018/Newsletter_Attica_Fires_2018_v11.pdf, last accessed 28 Nov. 2018.
Martinez-Harms, M. J., Caceres, H., Biggs, D., & Possingham, H. P. (2017). After Chile’s fires, reforest private land. Science, 356, 147–148. https://doi.org/10.1126/science.aan0701.
Maselli, F., Romanelli, S., Bottai, L., & Zipoli, G. (2003). Use of NOAA-AVHRR NDVI images for the estimation of dynamic fire risk in Mediterranean areas. Remote Sensing of Environment, 86, 187–197. https://doi.org/10.1016/S0034-4257(03)00099-3.
Merzouki, A., & Leblon, B. (2011). Mapping fuel moisture codes using MODIS images and the Getis statistic over western Canada grasslands. International Journal of Remote Sensing, 32, 1619–1634. https://doi.org/10.1080/01431160903586773.
Molod, A., Takacs, L., Suarez, M., & Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geoscientific Model Development, 8, 1339–1356. https://doi.org/10.5194/gmd-8-1339-2015.
Nurbaya, N. (2018). The State of Indonesia’s forests 2018, 196 pp, ISBN: 978-602-8358-82-8. Available at https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwia5ZKauvfeAhUI-6QKHTh0APwQFjAAegQICRAC&url=http%3A%2F%2Fwww.menlhk.go.id%2Fdownlot.php%3Ffile%3Dthe_state_Indonesia_forests_2018_Book.pdf&usg=AOvVaw3Dg8lu_ci6MFLMx3XRcMSL, last accessed 28 Nov. 2018.
Oldford, S., Leblon, B., Maclean, D., & Flannigan, M. (2006). Predicting slow-drying fire weather index fuel moisture codes with NOAA-AVHRR images in Canada’s northern boreal forests. International Journal of Remote Sensing, 27, 3881–3902. https://doi.org/10.1080/01431160600784234.
Peterson, D. A., Campbell, J. R., Hyer, E. J., Fromm, M. D., Kablick, G. P., Cossuth, J. H., & DeLand, M. T. (2018). Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke. npj Climate and Atmospheric Science, 1, 30. https://doi.org/10.1038/s41612-018-0039-3.
Robinne, F. N., Bladon, K. D., Miller, C., Parisien, M. A., Mathieu, J., & Flannigan, M. D. (2018). A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 610, 1193–1206. https://doi.org/10.1016/j.scitotenv.2017.08.112.
San-Miguel-Ayanz, J., Manuel Moreno, J., & Camia, A. (2013). Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. Forest Ecology and Management, 294, 11–22. https://doi.org/10.1016/j.foreco.2012.10.050.
Steininger, M. K., Tabor, K., Small, J., Pinto, C., Soliz, J., & Chavez, E. (2013). A satellite model of forest flammability. Environmental Management, 52, 136–150. https://doi.org/10.1007/s00267-013-0073-1.
Stocks, B. J., Lawson, B. D., Alexander, M. E., Vanwagner, C. E., McAlpine, R. S., Lynham, T. J., & Dube, D. E. (1989). The Canadian forest fire danger rating system – An Overview. Forestry Chronicle, 65, 450–457. Available from https://cfs.nrcan.gc.ca/publications?id=11347, last accessed 28 Nov. 2018.
Taylor, S. W., & Alexander, M. E. (2006). Science, technology, and human factors in fire danger rating: The Canadian experience. International Journal of Wildland Fire, 15, 121–135. https://doi.org/10.1071/WF05021.
Úbeda, X., & Sarricolea, P. (2016). Wildfires in Chile: A review. Global and Planetary Change, 146, 152–161. https://doi.org/10.1016/j.gloplacha.2016.10.004.
Urrutia-Jalabert, R., Gonzalez, M. E., Gonzalez-Reyes, A., Lara, A., & Garreaud, R. (2018). Climate variability and forest fires in central and south-central Chile. Ecosphere, 9, e02171. https://doi.org/10.1002/ecs2.2171.
van der Werf, G. R., Randerson, J. T., Giglio, L., Gobron, N., & Dolman, A. J. (2008a). Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles, 22. https://doi.org/10.1029/2007GB003122.
van der Werf, G. R., Dempewolf, J., Trigg, S. N., Randerson, J. T., Kasibhatla, P. S., Giglio, L., Murdiyarso, D., Peters, W., Morton, D. C., Collatz, G. J., Dolman, A. J., & DeFries, R. S. (2008b). Climate regulation of fire emissions and deforestation in equatorial Asia. PNAS, 105, 20350–20355. https://doi.org/10.1073/pnas.0803375105.
van Wagner, C. E. (1987). Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service, 37 pp. Available at https://cfs.nrcan.gc.ca/publications?id=19927, last accessed 28 Nov. 2018.
Venalainen, A., Korhonen, N., Hyvarinen, O., Koutsias, N., Xystrakis, F., Urbieta, I. R., & Moreno, J. M. (2014). Temporal variations and change in forest fire danger in Europe for 1960-2012. Natural Hazards and Earth System Sciences, 14, 1477–1490. https://doi.org/10.5194/nhess-14-1477-2014.
Viegas, D. X., Bovio, G., Ferreira, A., Nosenzo, A., & Sol, B. (1999). Comparative study of various methods of fire danger evaluation in southern Europe. International Journal of Wildland Fire, 9, 235–246. https://doi.org/10.1071/WF00015.
Wotton, B. M. (2009). Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environmental and Ecological Statistics, 16, 107–131. https://doi.org/10.1007/s10651-007-0084-2.
Acknowledgements
The development of GFWED is supported by the NASA Precipitation Measurement Missions Science Team and the NASA Group on Earth Observations Work Programme. All GFWED data are available at https://data.giss.nasa.gov/impacts/gfwed/ (last accessed 28 Nov. 2018).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Field, R.D. (2020). Using Satellite Estimates of Precipitation for Fire Danger Rating. In: Levizzani, V., Kidd, C., Kirschbaum, D., Kummerow, C., Nakamura, K., Turk, F. (eds) Satellite Precipitation Measurement. Advances in Global Change Research, vol 69. Springer, Cham. https://doi.org/10.1007/978-3-030-35798-6_33
Download citation
DOI: https://doi.org/10.1007/978-3-030-35798-6_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35797-9
Online ISBN: 978-3-030-35798-6
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)