Use of Saliva to Better Understand the Daily Experience of Adulthood and Aging



This chapter reviews the use of saliva to assess age-related changes in important biological systems, describes how saliva can be used to assess naturally occurring fluctuations of biomarkers in adults’ daily lives, and offers cutting-edge statistical approaches that can help answer research questions that involve these multivariate and dynamic phenomena. This chapter highlights the use of saliva to assess day-to-day variability in biological markers across adulthood. Salivary biomarkers offer a unique and innovative window into investigating the daily experiences of midlife and older adults. Using findings from multiple daily diary studies where participants provide multiple saliva samples each day, we describe within-and across-day patterns of cortisol, dehydroepiandrosterone sulfate (DHEA-S), and salivary alpha-amylase (sAA). Using multilevel and latent state-trait modeling, we show differentiated patterns in each of these biomarkers across the day. Specific attention is paid to age differences in the daily patterning of these salivary biomarkers as well as their links to stressful events. The chapter also reviews recent research that links daily salivary biomarkers to long-term health and well-being. Recommendations for the design, collection, and statistical modeling of daily assessments of salivary biomarkers are also provided.


Cortisol Dehydroepiandrosterone sulfate (DHEA-S) Salivary alpha-amylase (sAA) Daily stress Multilevel modeling Latent state-trait modeling 



Since 1995 the MIDUS study has been funded by the John D. and Catherine T. MacArthur Foundation Research Network, National Institute on Aging (P01-AG020166), and National Institute on Aging (U19-AG051426). Biomarker data collection was further supported by the NIH National Center for Advancing Translational Sciences’ (NCATS) Clinical and Translational Science Award (CTSA) program as “1UL1RR025011”. The Daily Stress and Health Study (DaSH) was funded by National Institute on Aging (R01AG031758).


  1. Affoo, R. H., Foley, N., Garrick, R., Siqueira, W. L., & Martin, R. E. (2015). Meta-analysis of salivary flow rates in young and older adults. Journal of the American Geriatrics Society, 63(10), 2142–2151. CrossRefPubMedGoogle Scholar
  2. Almeida, D. M. (2005). Resilience and vulnerability to daily stressors assessed via diary methods. Current Directions in Psychological Science, 14, 64–68. CrossRefGoogle Scholar
  3. Almeida, D. M., McGonagle, K., & King, H. (2009). Assessing daily stress processes in social surveys by combining stressor exposure and salivary cortisol. Biodemography and Social Biology, 55(2), 220–238. CrossRefGoogle Scholar
  4. Almeida, D. M., Neupert, S. D., Banks, S. R., & Serido, J. (2005). Do daily stress processes account for socioeconomic health disparities? Journals of Gerontology: Social Science, 60, 34–39. CrossRefGoogle Scholar
  5. Almeida, D. M., Piazza, J. R., & Stawski, R. S. (2009). Interindividual differences and intraindividual variability in the cortisol awakening response: An examination of age and gender. Psychology and Aging, 24(4), 819–827. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Almeida, D. M., Piazza, J. R., Stawski, R. S., & Klein, L. C. (2011). The speedometer of life: Stress, health and aging. In K. W. Schaie & S. L. Willis (Eds.), Handbook of the psychology of aging (7th ed., pp. 191–206). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  7. Almeida, D. M., & Wong, J. D. (2009). Life transition and stress: A life course perspective on daily stress processes. In G. H. Elder & J. Z. Giele (Eds.), The craft of life course research. New York: Guilford Press.Google Scholar
  8. Aneshensel, C. S., Pearlin, L. I., Mullan, J. T., Zarit, S. H., & Whitlatch, C. J. (1995). Profiles in caregiving: The unexpected career. San Diego, CA: Academic Press.Google Scholar
  9. Barker, E. T., Greenberg, J. S., Mailick Seltzer, M., & Almeida, D. M. (2012). Daily stress and cortisol patterns in parents of adult children with a serious mental illness. Health Psychology, 31(1), 130–134. CrossRefPubMedGoogle Scholar
  10. Bauer, A. M., Quas, J. A., & Boyce, W. T. (2002). Associations between physiological reactivity and children’s behavior: Advantages of a multisystem approach. Journal of Developmental & Behavioral Pediatrics, 23(2), 102–113.CrossRefGoogle Scholar
  11. Chatterton, R. T., Vogelsong, K. M., Lu, Y., Ellman, A. B., & Hudgens, G. A. (1996). Salivary α-amylase as a measure of endogenous adrenergic activity. Clinical Physiology and Functional Imaging, 16, 433–448. CrossRefGoogle Scholar
  12. Chatterton, R. T., Vogelsong, K. M., Lu, Y., & Hudgens, G. A. (1997). Hormonal responses to psychological stress in men preparing for skydiving. The Journal of Clinical Endocrinology & Metabolism, 82, 2503–2509. CrossRefGoogle Scholar
  13. Chida, Y., & Steptoe, A. (2009). Cortisol awakening response and psychosocial factors: A systematic review and meta-analysis. Biological Psychology, 80(3), 265–278. CrossRefPubMedGoogle Scholar
  14. Costanzo, E. S., Stawski, R. S., Ryff, C. D., Coe, C. L., & Almeida, D. M. (2012). Cancer survivors' responses to daily stressors: Implications for quality of life. Health Psychology, 31(3), 360–370. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dettenborn, L., James, G. D., van Berge-Landry, H., Valdimarsdottir, H. B., Montgomery, G. H., & Bovbjerg, D. H. (2005). Heightened cortisol responses to daily stress in working women at familial risk for breast cancer. Biological Psychology, 69, 167–179. CrossRefPubMedGoogle Scholar
  16. Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–391.CrossRefGoogle Scholar
  17. Ditzen, B., Ehlert, U., & Nater, U. M. (2014). Associations between salivary alpha-amylase and catecholamines—A multilevel modeling approach. Biological Psychology, 103, 15–18. CrossRefPubMedGoogle Scholar
  18. Dmitrieva, N. O., Almeida, D. M., Dmitrieva, J., Loken, E., & Pieper, C. F. (2013). A day-centered approach to modeling cortisol: Diurnal cortisol profiles and their associations among U.S. adults. Psychoneuroendocrinology, 38(10), 2354–2365. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Doane, L. D., Chen, F. R., Sladek, M. R., Van Lenten, S. A., & Granger, D. A. (2015). Latent trait cortisol (LTC) levels: Reliability, validity, and stability. Psychoneuroendocrinology, 55, 21–35. CrossRefPubMedGoogle Scholar
  20. Dodds, M. W., Johnson, D. A., & Yeh, C. K. (2005). Health benefits of saliva: A review. Journal of Dentistry, 33(3), 223–233. CrossRefPubMedGoogle Scholar
  21. Epel, E. S., Burke, H. M., & Wolkowitz, O. M. (2009). The psychoneuroendocrinology of aging: Anabolic and catabolic hormones. In C. M. Aldwin, C. L. Park, & A. Spiro (Eds.), Handbook of health psychology and aging (pp. 119–141). New York, NY: Guilford Press.Google Scholar
  22. Friedman, E. M., Karlamangla, A. S., Almeida, D. M., & Seeman, T. E. (2012). Social strain and cortisol regulation in midlife in the US. Social Science and Medicine, 74, 607–615. CrossRefPubMedGoogle Scholar
  23. Gordis, E. B., Granger, D. A., Susman, E. J., & Trickett, P. K. (2008). Salivary alpha amylase–cortisol asymmetry in maltreated youth. Hormones and Behavior, 53(1), 96–103. CrossRefPubMedGoogle Scholar
  24. Granger, D. A., Kivlighan, K. T., El-Sheikh, M., Gordis, E. B., & Stroud, L. R. (2007). Salivary α-amylase in biobehavioral research: Recent developments and applications. Annals of the New York Academy of Sciences, 1098(1), 122–144. CrossRefPubMedGoogle Scholar
  25. Granger, D. A., Shirtcliff, E. A., Zahn-Waxler, C., Usher, B., Klimes-Dougan, B., & Hastings, P. (2003). Salivary testosterone diurnal variation and psychopathology in adolescent males and females: Individual differences and developmental effects. Development and Psychopathology, 15, 431–449. CrossRefPubMedGoogle Scholar
  26. Heller, A. S., van Reekum, C. M., Schaefer, S. M., Lapate, R. C., Radler, B. T., Ryff, C. D., & Davidson, R. J. (2013). Sustained ventral striatal activity predicts eudaimonic well-being and cortisol output. Psychological Science, 24, 2191–2200. PMCID: PMC386696.CrossRefPubMedGoogle Scholar
  27. Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35(1), 2–16. CrossRefGoogle Scholar
  28. Karlamangla, A. S., Merkin, S. S., Almeida, D. M., Friedman, E. M., Mogle, J. A., & Seeman, T. E. (2018). Early-life adversity and dysregulation of adult diurnal cortisol rhythm. The Journals of Gerontology: Series B, 74(1), 160–169.CrossRefGoogle Scholar
  29. Keenan, D. M., Licinio, J., & Veldhuis, J. D. (2001). A feedback-controlled ensemble model of the stress-responsive hypothalamo-pituitary-adrenal axis. PNAS, 98, 4028–4033.CrossRefGoogle Scholar
  30. Kirschbaum, C., & Hellhammer, D. H. (1989). Salivary cortisol in psychobiological research: An overview. Neuropsychobiology, 22(3), 150–169. CrossRefPubMedGoogle Scholar
  31. Kirschbaum, C., Steyer, R., Eid, M., Patalla, U., Schwenkmezger, P., & Hellhammer, D. H. (1990). Cortisol and behavior: 2. Application of a latent state-trait model to salivary cortisol. Psychoneuroendocrinology, 15(4), 297–307. CrossRefPubMedGoogle Scholar
  32. Klein, L. C., & Corwin, E. J. (2007). Homeostasis and the stress response. In E. J. Corwin (Ed.), Handbook of pathophysiology (3rd ed., pp. 159–172). Philadelphia, PA: Lippincott Williams & Wilkins.Google Scholar
  33. Klein, L., Kim, K., Almeida, D. M., Femia, E. E., Rovine, M., & Zarit, S. H. (2016). Anticipating an easier day: Effects of adult day services on daily cortisol and stress. The Gerontologist, 56, 303–312. CrossRefPubMedGoogle Scholar
  34. Klein, L. C., Whetzel, C. A., Almeida, D. M., Bennett, J. M., Stawski, R. S., Banks, S. R., & Crouter, A. C. (2008). Salivary DHEA-S levels across the day: Evidence for a daily rhythm in a healthy adult population. Psychosomatic Medicine, 70(3), A-46.Google Scholar
  35. Krug, A. W., Ziegler, C. G., & Bornstein, S. R. (2008). DHEA and DHEA-S and their functions in the brain and adrenal medulla. In M. S. Ritsner & A. Weizman (Eds.), Neuroactive steroids in brain function, behavior and neuropsychiatric disorders (pp. 227–239). Dordrecht: Springer. CrossRefGoogle Scholar
  36. Leggett, A. N., Liu, Y., Klein, L. C., & Zarit, S. H. (2016). Sleep duration and the cortisol awakening response in dementia caregivers utilizing adult day services. Health Psychology, 35(5), 465–473. CrossRefPubMedGoogle Scholar
  37. Lennartsson, A.-K., Theorell, T., Kushnir, M. M., Bergquist, J., & Jonsdottir, I. H. (2013). Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress. Psychoneuroendocrinology, 38(9), 1650–1657. CrossRefPubMedGoogle Scholar
  38. Liu, Y., Almeida, D. M., Rovine, M. J., & Zarit, S. H. (2016). Modeling cortisol daily rhythms of family caregivers of individuals with dementia: Daily stressors and adult day services use. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 73(3), 457–467. CrossRefGoogle Scholar
  39. Liu, Y., Almeida, D. M., Rovine, M. J., & Zarit, S. H. (2017). Care transitions and adult day services moderate the longitudinal links between stress biomarkers and family caregivers' functional health. Gerontology, 63(6), 538–549. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu, Y., Kong, J., Bangerter, L. R., Zarit, S. H., & Almeida, D. M. (2018). Early parental abuse and daily assistance to aging parents with disability: Associations with the middle-aged adults’ daily well-being. The Journals of Gerontology: Series B, 73(5), e59–e68. CrossRefGoogle Scholar
  41. Liu, Y., Granger, D. A., Kim, K., Klein, L. C., Almeida, D. M., & Zarit, S. H. (2017). Diurnal salivary alpha-amylase dynamics among dementia family caregivers. Health Psychology, 36(2), 160–168. CrossRefPubMedGoogle Scholar
  42. Liu, S., Rovine, M. J., Klein, L. C., & Almeida, D. M. (2013). Synchrony of diurnal cortisol pattern in couples. Journal of Family Psychology, 27(4), 579–588. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lovallo, W. R., & Thomas, T. L. (2000). Stress hormones in psychophysiological research: Emotional, behavioral, and cognitive implications. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (pp. 342–367). New York, NY: Cambridge University Press.Google Scholar
  44. Lovell, B., & Wetherell, M. A. (2011). The cost of caregiving: Endocrine and immune implications in elderly and non-elderly caregivers. Neuroscience and Biobehavioral Reviews, 35(6), 1342–1352. CrossRefPubMedGoogle Scholar
  45. Maninger, N., Wolkowitz, O. M., Reus, V. I., Epel, E. S., & Mellon, S. H. (2009). Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Frontiers in Neuroendocrinology, 30(1), 65–91. CrossRefPubMedGoogle Scholar
  46. Marin, M. F., Lord, C., Andrews, J., Juster, R. P., Sindi, S., Arsenault-Lapierre, G., … Lupien, S. J. (2011). Chronic stress, cognitive functioning and mental health. Neurobiology of Learning and Memory, 96(4), 583–595. CrossRefPubMedGoogle Scholar
  47. McEwen, B. S. (2000). The neurobiology of stress: From serendipity to clinical relevance. Brain Research, 886, 172–189. CrossRefPubMedGoogle Scholar
  48. McEwen, B. S. (2003). Mood disorders and allostatic load. Biological Psychiatry, 54(3), 200–207. CrossRefPubMedGoogle Scholar
  49. McEwen, B. S. (2004). Protection and damage from acute and chronic stress: Allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy of Sciences, 1032(1), 1–7. CrossRefPubMedGoogle Scholar
  50. Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133(1), 25–45. CrossRefPubMedGoogle Scholar
  51. Miller, G. E., Cohen, S., & Ritchey, A. K. (2002). Chronic psychological stress and the regulation of pro-inflammatory cytokines: A glucocorticoid-resistance model. Health Psychology, 21(6), 531–541. CrossRefPubMedGoogle Scholar
  52. Mortazavi, H., Baharvand, M., Movahhedian, A., Mohammadi, M., & Khodadoustan, A. (2014). Xerostomia due to systemic disease: A review of 20 conditions and mechanisms. Annals of Medical and Health Science Research, 4(4), 503–510. CrossRefGoogle Scholar
  53. Nagler, R. M., & Hershkovich, O. (2005). Relationships between age, drugs, oral sensorial complaints and salivary profile. Archives of Oral Biology, 50(1), 7–16. CrossRefPubMedGoogle Scholar
  54. Nater, U. M., Hoppmann, C. A., & Scott, S. B. (2013). Diurnal profiles of salivary cortisol and alpha-amylase change across the adult lifespan: Evidence from repeated daily life assessments. Psychoneuroendocrinology, 38(12), 3167–3171. CrossRefPubMedGoogle Scholar
  55. Nater, U. M., La Marca, R., Florin, L., Moses, A., Langhans, W., Koller, M. M., & Ehlert, U. (2006). Stress-induced changes in human salivary alpha-amylase activity: Associations with adrenergic activity. Psychoneuroendocrinology, 31, 49–58. CrossRefPubMedGoogle Scholar
  56. Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486–496. CrossRefPubMedGoogle Scholar
  57. Nater, U. M., Rohleder, N., Gaab, J., Berger, S., Jud, A., Kirschbaum, C., & Ehlert, U. (2005). Human salivary alpha-amylase reactivity in a psychosocial stress paradigm. International Journal of Psychophysiology, 55, 333–342. CrossRefPubMedGoogle Scholar
  58. Nater, U. M., Rohleder, N., Schlotz, W., Ehlert, U., & Kirschbaum, C. (2007). Determinants of the diurnal course of salivary alpha-amylase. Psychoneuroendocrinology, 32(4), 392–401. CrossRefPubMedGoogle Scholar
  59. Nederfors, T., & Dahlof, C. (1992). Effects of the β-adrenoceptor antagonists atenolol and propranolol on human whole saliva flow rate and composition. Archives of Oral Biology, 37(7), 579–584. CrossRefPubMedGoogle Scholar
  60. O’Neill, J. W., Harrison, M. M., Cleveland, J. N., Almeida, D. M., Stawski, R. S., & Crouter, A. C. (2009). Work-family climate, organizational commitment, and turnover: Multilevel contagion effects of leaders. Journal of Vocational Behavior, 74, 18–29. CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ong, A. D., Fuller-Rowell, T. E., Bonanno, G. A., & Almeida, D. M. (2011). Spousal loss predicts alterations in diurnal cortisol activity through prospective changes in positive emotion. Health Psychology, 30(2), 220–227. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pearlin, L. I., Mullan, J. T., Semple, S. J., & Skaff, M. M. (1990). Caregiving and the stress process: An overview of concepts and their measures. The Gerontologist, 30(5), 583–594. CrossRefPubMedGoogle Scholar
  63. Piazza, J. R., Almeida, D. M., Dmitrieva, N. O., & Klein, L. C. (2010). Frontiers in the use of biomarkers of health in research on stress and aging. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65(5), 513–525. CrossRefGoogle Scholar
  64. Piazza, J. R., Charles, S. T., Stawski, R. S., & Almeida, D. M. (2013). Age and the association between negative affective states and diurnal cortisol. Psychology and Aging, 28(1), 47–56. CrossRefPubMedGoogle Scholar
  65. Piazza, J. R., Dmitrieva, N. D., Charles, S. T., Almeida, D. M., & Orona, G. O. (2018). Diurnal cortisol profiles, inflammation and functional limitations in aging: Findings from the MIDUS study. Health Psychology, 37(9), 839–849. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Polk, D. E., Cohen, S., Doyle, W. J., Skoner, D. P., & Kirschbaum, C. (2005). State and trait affect as predictors of salivary cortisol in healthy adults. Psychoneuroendocrinology, 30, 261–272.CrossRefGoogle Scholar
  67. Pruessner, M., Hellhammer, D. H., Pruessner, J. C., & Lupien, S. J. (2003). Self-reported depressive symptoms and stress levels in healthy young men: Associations with the cortisol response to awakening. Psychosomatic Medicine, 65(1), 92–99.CrossRefGoogle Scholar
  68. Pruessner, J. C., Kirschbaum, C., Meinlschmid, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28(7), 916–931. CrossRefPubMedGoogle Scholar
  69. Rohleder, N., Marin, T. J., Ma, R., & Miller, G. E. (2009). Biologic cost of caring for a cancer patient: Dysregulation of pro- and anti-inflammatory signaling pathways. Journal of Clinical Oncology, 27(18), 2909–2915. CrossRefPubMedGoogle Scholar
  70. Rohleder, N., Nater, U. M., Wolf, J. M., Ehlert, U., & Kirschbaum, C. (2004). Psychosocial stress-induced activation of salivary alpha-amylase: An indicator of sympathetic activity? Annals of the New York Academy of Sciences, 1032(1), 258–263. CrossRefPubMedGoogle Scholar
  71. Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1986). The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocrinology Review, 7(3), 284–301. CrossRefGoogle Scholar
  72. Seltzer, M. M., Greenberg, J. S., Hong, J., Smith, L. E., Almeida, D. M., Coe, C., & Stawski, R. S. (2010). Maternal cortisol levels and behavior problems in adolescents and adults with ASD. Journal of Autism and Developmental Disorders, 40(4), 457–469.CrossRefGoogle Scholar
  73. Sin, N. L., Graham, J. E., & Almeida, D. M. (2015). Daily positive events and inflammation: Findings from the National Study of Daily Experiences. Brain, Behavior, and Immunity, 43, 130–138. CrossRefPubMedGoogle Scholar
  74. Skosnik, P. D., Chatterton, R. T., Swisher, T., & Park, S. (2000). Modulation of attentional inhibition by norepinephrine and cortisol after psychological stress. International Journal of Psychophysiology, 36, 59–68. CrossRefPubMedGoogle Scholar
  75. Slatcher, R. B., Selcuk, E., & Ong, A. D. (2015). Perceived partner responsiveness predicts diurnal cortisol profiles 10 years later. Psychological Science, 26(7), 972–982.CrossRefGoogle Scholar
  76. Smith, C. H., Boland, B., Daurreeawoo, Y., Donaldson, E., Small, K., & Tuomainen, J. (2013). Effect of aging on stimulated salivary flow in adults. Journal of the American Geriatric Society, 61(5), 805–808. CrossRefGoogle Scholar
  77. Sörensen, S., Pinquart, M., & Duberstein, P. (2002). How effective are interventions with caregivers? An updated meta-analysis. The Gerontologist, 42(3), 356–372. CrossRefPubMedGoogle Scholar
  78. Stawski, R. S., Almeida, D. M., Lachman, M. E., Tun, P. A., Rosnick, C. B., & Seeman, T. (2011). Associations between cognitive function and naturally occurring daily cortisol during middle adulthood: Timing is everything. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 66B(suppl 1), i71–i81. CrossRefGoogle Scholar
  79. Stawski, R. S., Cichy, K. E., Piazza, J. R., & Almeida, D. M. (2013). Associations among daily stressors and salivary cortisol: Findings from the National Study of Daily Experiences. Psychoneuroendocrinology, 38(11), 2654–2665. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Steyer, R., Mayer, A., Geiser, C., & Cole, D. A. (2015). A theory of states and traits – revised. Annual Review of Clinical Psychology, 11(1), 71–98. CrossRefPubMedGoogle Scholar
  81. Stone, A. A., Schwartz, J. E., Smyth, J., Kirschbaum, C., Cohen, S., Hellhammer, D., & Grossman, S. (2001). Individual differences in the diurnal cycle of salivary free cortisol: A replication of flattened cycles for some individuals. Psychoneuroendocrinology, 26, 295–306. CrossRefPubMedGoogle Scholar
  82. Tannenbaum, C., Barrett-Connor, E., Laughlin, G. A., & Platt, R. W. (2003). A longitudinal study of dehydroepiandrosterone sulphate (DHEAS) change in older men and women: The Rancho Bernardo Study. European Journal of Endocrinology, 151(6), 717–725.Google Scholar
  83. Taylor, S. E., Karlamangla, A. S., Friedman, E. M., & Seeman, T. E. (2010). Early environment affects neuroendocrine regulation in adulthood. Social Cognitive and Affective Neuroscience, 6(2), 244–251. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Thoma, M. V., Kirschbaum, C., Wolf, J. M., & Rohleder, N. (2012). Acute responses in salivary alpha-amylase predict increases of plasma norepinehphrine. Biological Psychology, 91(3), 342–348. CrossRefPubMedGoogle Scholar
  85. Tsigos, C., Kyrou, I., Kassi, E., & Chrousos, G. P. (2000). Stress, endocrine physiology and pathophysiology. In L. J. De Groot, G. Chrousos, K. Dungan, K. R. Feingold, A. Grossman, J. M. Hershman, C. Koch, M. Korbonits, R. McLachlan, M. New, J. Purnell, R. Rebar, F. Singer, & A. Vinik (Eds.), Endotext. South Dartmouth, MA: Scholar
  86. Varga, G. (2012). Physiology of the salivary glands. Surgery (Oxford), 30(11), 578–583. CrossRefGoogle Scholar
  87. Vitaliano, P. P., Zhang, J., & Scanlan, J. M. (2003). Is caregiving hazardous to one's physical health? A meta-analysis. Psychological Bulletin, 129(6), 946–972. CrossRefPubMedGoogle Scholar
  88. Von Känel, R., Mills, P. J., Mausbach, B. T., Dimsdale, J. E., Patterson, T. L., Ziegler, M. G., … Grant, I. (2012). Effect of Alzheimer caregiving on circulating levels of C-reactive protein and other biomarkers relevant to cardiovascular disease risk: A longitudinal study. Gerontology, 58(4), 354–365. CrossRefGoogle Scholar
  89. Wolff, A., Joshi, R. K., Ekstrom, J., Aframian, D., Pedersen, A. M., Proctor, G., … Dawes, C. (2017). A guide to medications inducing salivary gland dysfunction, xerostomia, and subjective sialorrhea: A systematic review sponsored by the World Workshop on Oral Medicine VI. Drugs in R&D, 17(1), 1–28. CrossRefGoogle Scholar
  90. Wust, S., Wolf, J., Hellhammer, D. H., Federenko, I., Schommer, N., & Kirschbaum, C. (2000). The cortisol awakening response - normal values and confounds. Noise Health, 2, 79–88.PubMedGoogle Scholar
  91. Yorgason, J. B., Almeida, D. M., Neupert, S. D., Spiro, A., & Hoffman, L. (2006). A dyadic examination of daily health symptoms and emotional well-being in later life couples. Family Relations, 55, 613–624. CrossRefGoogle Scholar
  92. Zarit, S. H., Kim, K., Femia, E. E., Almeida, D. M., & Klein, L. C. (2014). The effects of adult day services on family caregivers’ daily stress, affect, and health: Outcomes from the daily stress and health (DaSH) study. The Gerontologist, 54(4), 570–579. CrossRefPubMedGoogle Scholar
  93. Zarit, S. H., Kim, K., Femia, E. E., Almeida, D. M., Savla, J., & Molenaar, P. C. M. (2011). Effects of adult day care on daily stress of caregivers: A within-person approach. The Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 66(5), 538–546. CrossRefGoogle Scholar
  94. Zarit, S. H., Whetzel, C. A., Kim, K., Femia, E. E., Almeida, D. M., Rovine, M. J., & Klein, L. C. (2014). Daily stressors and adult day service use by family caregivers: Effects on depressive symptoms, positive mood, and dehydroepiandrosterone-sulfate. The American Journal of Geriatric Psychiatry, 22(12), 1592–1602. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhang, C. Z., Cheng, X. Q., Li, J. Y., Zhang, P., Yi, P., Xu, X., & Zhou, X. D. (2016). Saliva in the diagnosis of diseases. International Journal of Oral Science, 8(3), 133–137. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Human Development and Family StudiesThe Pennsylvania State UniversityState CollegeUSA
  2. 2.Department of Health ScienceCalifornia State University, FullertonFullertonUSA
  3. 3.Department of Human Development and Family StudiesUtah State UniversityLoganUSA

Personalised recommendations