Skip to main content

Tree Structure

  • Chapter
  • First Online:
Models of Tree and Stand Dynamics

Abstract

Interactions between structure, function and survival under natural selection provide a plausible explanation for the remarkable regularity observed in tree structures, regardless of the apparent wide variability of form between species and individuals. The regularity has been described and modelled in a number of ways, ranging from simple empirical observation to complicated mathematical evolutionary optimisation models. In this chapter, we introduce some of the key ideas about structural regularity that have been helpful in modelling the allocation of growth to different tree components in material balance models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bar-Yam Y (2012) Dynamics of complex systems. Perseus Books, Dordrecht/London/New York

    Google Scholar 

  • Berninger F, Coll L, Vanninen P, Mäkelä A, Palmroth S, Nikinmaa E (2005) Effects of tree size and position on pipe model ratios in scots pine. Can J For Res 35:1294–1304

    Article  Google Scholar 

  • Borchert F, Slade NA (1981) Bifurcation ratios and the adaptive geopmetry of trees. Bot Gaz 142:394–401

    Article  Google Scholar 

  • Cajander AK (1949) Finnish forest types and their significance. Acta Forestalia Fennica 56:1–71

    Google Scholar 

  • Carlson WC, Harrington CA (1987) Cross-sectional area relationships in root systems of loblolly and shortleaf pine. Can J For Res 17(6):556–558

    Article  Google Scholar 

  • Chen HYH, Klinka K, Kayahara GJ (1996) Effects of light on growth, crown architecture, and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings. Can J For Res 26:1149–1157

    Article  Google Scholar 

  • Chiba Y, Fujimori T, Kiyono Y (1988) Another interpretation of the profile diagram and its availability with consideration of the growth process of forest trees. J Jap For Soc 70:245–254

    Google Scholar 

  • de Reffye P, Houllier F, Blaise F, Barthélémy D, Dauzat J, Auclair D (1995) A model simulating above- and belowground tree architecture with agroforestry applications. Agroforestry Syst 30:175–197

    Article  Google Scholar 

  • Duursma RA, Mäkelä A (2007) Summary models for light interception and light-use efficiency of non-homogeneous canopies. Tree Physiol 27:859–870

    Article  CAS  PubMed  Google Scholar 

  • Duursma RA, Mäkelä A, Reid DEB, Jokela EJ, Porté A, Roberts SD (2010) Branching networks in gymnosperm trees: implications for metabolic scaling. Funct Ecol 24:723–730

    Article  Google Scholar 

  • Duursma RA, Falster DS, Valladares F, Sterck FJ, Pearcy RW, Lusk CH, Sendall KM, Nordenstahl M, Houter NC, Atwell BJ, Kelly N, Kelly JWG, Liberloo M, Tissue DT, Medlyn BE, Ellsworth DS (2011) Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. New Phytol 193:397–408

    Article  PubMed  Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007) Fine root biomass in relation to site and stand characteristics in norway spruce and scots pine stands. Tree Physiol 27:1493–1504

    Article  CAS  PubMed  Google Scholar 

  • Honda H (1971) Description of the form of trees by the parameters of the tree-like body: effects of the branching angle and the branch length on the shape of the tree-like body. J Theor Biol 31:331–338

    Article  CAS  PubMed  Google Scholar 

  • Honda H, Tomlinson PB, Fisher JB (1982) Two geometrical models of branching of botanical trees. Ann Bot 49:1–11

    Article  Google Scholar 

  • Horn HS (2000) Twigs, trees, and the dynamics of carbon in the landscape. In: Brown JH, West GB (eds) Scaling in biology. Oxford University Press, Oxford, pp 199–220

    Google Scholar 

  • Hu M, Lehtonen A, Minunno F, Mäkelä A (2020) Age effect on tree structure and biomass allocation in Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] Karst.). Manuscript submitted to Ann For Sci

    Google Scholar 

  • Ingestad T, Ågren GI (1992) Theories and methods on plant nutrition and growth. Physiol Plant 84:177–184

    Article  CAS  Google Scholar 

  • Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. For Ecol Manage 146:199–209

    Article  Google Scholar 

  • King D, Loucks OL (1978) The theory of tree bole and branch form. Radiat Environ Biophys 15:141–165

    Article  CAS  PubMed  Google Scholar 

  • Koivisto P (1959) Growth and yield tables (in Finnish). Comm Inst Forestalis Fenniae 51(8):1–49

    Google Scholar 

  • Kozlowski J, Konarzewski M (2004) Is West, Brown and Enquist’s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 8:283–289

    Article  Google Scholar 

  • Landsberg JJ, Mäkelä A, Sievänen R, Kukkola M (2005) Analysis of biomass accumulation and stem size distributions over long periods in managed stands of Pinus sylvestris in Finland using the 3-PG model. Tree Phys 25:781–792

    Article  Google Scholar 

  • Lang ARG (1991) Application of some of Cauchy’s theorems to the estimation of surface areas of leaves, needles and branches of plants, and light transmittance. Agric For Meteorol 55:191–212

    Article  Google Scholar 

  • Larson PR (1965) Stem form of young Larix as influenced by wind and pruning. For Sci 11: 412–423

    Google Scholar 

  • Lehnebach R, Beyer R, Letort V, Heuret P (2018) The pipe model theory half a century on: a review. Ann Bot 121:773–795

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehtonen A (2005) Estimating foliage biomass in scots pine (Pinus sylvestris) and Norway spruce (Picea abies) plots. Tree Physiol 25:803–811

    Article  PubMed  Google Scholar 

  • Lehtonen A, Heikkinen J, Petersson H, Tupek B, Liski E, Mäkelä A (2020) Scots pine and Norway spruce foliage biomass in Finland and Sweden–testing traditional models vs. the pipe model theory. Can J For Res 50:146–154. https://doi.org/10.1139/cjfr-2019-0211

    Article  Google Scholar 

  • Litton CM, Kauffmann JB (2008) Allometric models for predicting aboveground biomass in two widespread woody plants in Hawaii. Biotropica 40:313–320

    Article  Google Scholar 

  • Mäkelä A (2002) Derivation of stem taper from the pipe theory in a carbon balance framework. Tree Physiol 22:891–905

    Article  PubMed  Google Scholar 

  • Mäkelä A, Valentine HT (2006a) Crown ratio influences allometric scaling in trees. Ecology 87(12):2967–2972

    Article  PubMed  Google Scholar 

  • Mäkelä A, Valentine HT (2006b) The quarter-power scaling model does not imply size invariant hydraulic resistance in plants. J Theor Biol 243:283–285

    Article  PubMed  Google Scholar 

  • Mandelbrot B (1983) The fractal geometry of nature. W. H. Freeman, New York

    Book  Google Scholar 

  • Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Sveriges Lantbruksuniversitet Rapporter-Skog 246:1–73

    Google Scholar 

  • McMahon TA (1973) Size and shape in biology. Science 179:1201–1204

    Article  CAS  PubMed  Google Scholar 

  • McMahon TA, Kronaurer RE (1976) Tree structures: deducing the principle of mechanical design. J Theor Biol 59:443–466

    Article  CAS  PubMed  Google Scholar 

  • Monsi M, Saeki T (1953) Uber den lichtfaktor in den pflanzengesellschaften und seine bedeutung fur die stoffproduktion. Jap J Bot 14:22–52

    Google Scholar 

  • Morgan J, Cannell MGR (1994) Shape of tree stems: a re-examination of the uniform stress hypothesis. Tree Physiol 14:49–62

    Article  CAS  PubMed  Google Scholar 

  • Neumann M, Moreno A, Mues V, Härkönen S, Mura M, Bouriaud O, Lang M, Achten WMJ, Thivolle-Cazat A, Bronisz K, Merganic J, Decuyper M, Alberdi I, Astrup R, Mohren F, Hasenauer H (2016) Comparison of carbon estimation methods for european forests. For Ecol Manage 361:397–420

    Article  Google Scholar 

  • Nikinmaa E, Goulet J, Messier C, Sievänen R, Perttunen J, Lehtonen M (2003) Shoot growth and crown development; the effect of crown position in 3D simulations. Tree Physiol 23:129–136

    Article  PubMed  Google Scholar 

  • Nikinmaa E, Hölttä T, Sievänen R (2014) Dynamics of leaf gas exchange, xylem and phloem transport, water potential and carbohydrate concentration in a realistic 3-D model tree crown. Ann Bot 114:653–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ (1994) Plant allometry. The Univeristy of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1995) Size-dependent allometry of tree height, diameter and trunk-taper. Ann Bot 75:217–227

    Article  Google Scholar 

  • Nilson T (1999) Inversion of gap frequency data in forest stands. Agric For Meteorol 98/99: 437–448

    Article  Google Scholar 

  • Oker-Blom P, Kellomäki S (1982) Theoretical computations on the role of crown shape in the absorption of light by forest trees. Math Biosci 59:291–311

    Article  Google Scholar 

  • Oker-Blom P, Pukkala T, Kuuluvainen T (1989) Relationship between radiation interception and photosynthesis in forest canopies: effect of stand structure and latitude. Ecol Modell 49:73–87

    Article  Google Scholar 

  • Osawa A, Ishizuka M, Kanazawa Y (1991) A profile theory of tree growth. For Ecol Manage 41:33–63

    Article  Google Scholar 

  • Patrick Bentley L, Stegen JC, Savage VM, Smith DD, von Allmen EI, Sperry JS, Reich PB, Enquist BJ (2013) An empirical assessment of tree branching networks and implications for plant allometric scaling models. Ecol Lett 16:1069–1078

    Article  Google Scholar 

  • Pearcy RW, Muraoka H, Valladares F (2005) Crown architecture in sun and shade environments: assessing function and trade-offs with a three-dimensional simulation model. New Phytol 166:791–800

    Article  PubMed  Google Scholar 

  • Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, Berlin

    Book  Google Scholar 

  • Repola J (2009) Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn 43:625–647

    Article  Google Scholar 

  • Richardson AD, ZuDohna H (2003) Predicting root biomass from branching patterns of douglas-fir root systems. Oikos 100(1):96–104

    Article  Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964a) A quantitative analysis of plant form – the pipe model theory. I. Basic analysis. Jap J Ecol 14:97–105

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964b) A quantitative analysis of plant form – the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jap J Ecol 14:133–139

    Google Scholar 

  • Sievänen R, Nikinmaa E, Nygren P, Ozier-Lafontaine H, Perttunen J, Hakula H (2000) Components of functional-structural tree models. Ann For Sci 57:399–412

    Article  Google Scholar 

  • Tomlinson PB (1983) Tree architecture. New approaches help to define the elusive biological property of tree form. Am Sci 71:141–149

    CAS  PubMed  Google Scholar 

  • Valentine HT, Mäkelä A (2005) Bridging process-based and empirical approaches to modeling tree growth. Tree Physiol 25:769–779

    Article  PubMed  Google Scholar 

  • Valentine HT, Green EJ, Mäkelä A, Amateis RL, Mäkinen H, Ducey MJ (2012) Models relating stem growth to crown length dynamics: application to loblolly pine and Norway spruce. Trees 26:469–478

    Article  Google Scholar 

  • Valentine HT, Baldwin VC Jr, Gregoire TG, Burkhart HE (1994a) Surrogates for foliar dry matter in loblolly pine. For Sci 40(3):576–585

    Google Scholar 

  • Vanninen P, Mäkelä A (1999) Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol 19:823–830

    Article  CAS  PubMed  Google Scholar 

  • Wang C (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Can J For Res 222:9–16

    Google Scholar 

  • Waring RH, Schroeder PE, Oren R (1982) Application of the pipe model theory to predict canopy leaf area. Can J For Res 12:556–560

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) A general model for the structure and allometry of plant vascular systems. Nature 400:664–667

    Article  CAS  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997a) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997b) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • Williams CJ, LePage BA, Vann DR, Tange T, Ikeda H, Ando M, Kusakabe T, Tsuzuki H, Sweda T (2003) Structure, allometry, and biomass of plantation Metasequoia glyptostroboides in Japan. For Ecol Manage 180:287–301

    Article  Google Scholar 

  • Zeide B (1998) Fractal analysis of foliage distribution in loblolly pine crowns. Can J For Res 28:106–114

    Article  Google Scholar 

  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. Silva Fenn Monogr 4:1–63

    Google Scholar 

  • Zimmermann MH (1978) Hydraulic architecture of some diffuse-porous trees. Can J Bot 56: 2286–2295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mäkelä, A., Valentine, H.T. (2020). Tree Structure. In: Models of Tree and Stand Dynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-35761-0_4

Download citation

Publish with us

Policies and ethics