Skip to main content

Deep Convolutional Neural Networks for Forensic Age Estimation: A Review

  • 2389 Accesses

Part of the Advanced Sciences and Technologies for Security Applications book series (ASTSA)

Abstract

Forensic age estimation is usually requested by courts, but applications can go beyond the legal requirement to enforce policies or offer age-sensitive services. Various biological features such as the face, bones, skeletal and dental structures can be utilised to estimate age. This article will cover how modern technology has developed to provide new methods and algorithms to digitalise this process for the medical community and beyond. The scientific study of Machine Learning (ML) have introduced statistical models without relying on explicit instructions, instead, these models rely on patterns and inference. Furthermore, the large-scale availability of relevant data (medical images) and computational power facilitated by the availability of powerful Graphics Processing Units (GPUs) and Cloud Computing services have accelerated this transformation in age estimation. Magnetic Resonant Imaging (MRI) and X-ray are examples of imaging techniques used to document bones and dental structures with attention to detail making them suitable for age estimation. We discuss how Convolutional Neural Network (CNN) can be used for this purpose and the advantage of using deep CNNs over traditional methods. The article also aims to evaluate various databases and algorithms used for age estimation using facial images and dental images.

Keywords

  • Deep learning
  • CNN
  • Forensic investigation
  • Information fusion
  • Magnetic resonant imaging (MRI)
  • Dental X-ray

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alkass K, Buchholz BA, Ohtani S, Yamamoto T, Druid H, Spalding KL (2010) Age estimation in forensic sciences, application of combined aspartic acid racemization and radiocarbon analysis. Mol Cell Probes 9(5):1022–1030. https://doi.org/10.1074/mcp.M900525-MCP200

    CrossRef  Google Scholar 

  2. Lillis D, Becker B, O’Sullivan T, Scanlon M (2016) Current challenges and future research areas for digital forensic investigation. arXiv preprint arXiv:1604.03850

    Google Scholar 

  3. Boddington R (2016) Practical digital forensics. Packt Publishing Ltd, Birmingham

    Google Scholar 

  4. Kim K, Choi Y, Hwang E (2009) Wrinkle feature-based skin age estimation scheme, pp 1222–1225. Published. https://doi.org/10.1109/ICME.2009.5202721

    CrossRef  Google Scholar 

  5. Guo G, Fu Y, Huang TS, Dyer CR (2008) Locally adjusted robust regression for human age estimation, pp 1–6. Published. https://doi.org/10.1109/WACV.2008.4544009

    CrossRef  Google Scholar 

  6. Han H, Otto C, Jain AK (2013) Age estimation from face images: human vs. machine performance, pp 1–8. Published. https://doi.org/10.1109/ICB.2013.6613022

    CrossRef  Google Scholar 

  7. Ahmadi-Assalemi G, Al-Khateeb HM, Epiphaniou G, Cosson J, Jahankhani H, Pillai P (2019) Federated blockchain-based tracking and liability attribution framework for employees and cyber-physical objects in a smart workplace, pp 1–9. Published. https://doi.org/10.1109/ICGS3.2019.8688297

    CrossRef  Google Scholar 

  8. Schmeling A, Garamendi PM, Prieto JL, Landa MI (2011) Forensic age estimation in unaccompanied minors and young living adults. In: Forensic medicine—from old problems to new challenges. InTech, Rijeka, pp 77–120. https://doi.org/10.5772/19261

    CrossRef  Google Scholar 

  9. Hjern A, Brendler-Lindqvist M, Norredam M (2012) Age assessment of young asylum seekers. Acta Paediatr 101(1):4–7. https://doi.org/10.1111/j.1651-2227.2011.02476.x

    CrossRef  Google Scholar 

  10. Schmeling A, Black S (2010) An introduction to the history of age estimation in the living. In: Age estimation in the living, pp 1–18. https://doi.org/10.1002/9780470669785.ch1

    CrossRef  Google Scholar 

  11. Sauer PJJ, Nicholson A, Neubauer D, Advocacy and Ethics Group of the European Academy of Paediatrics (2016) Age determination in asylum seekers: physicians should not be implicated. Eur J Pediatr 175(3):299–303. https://doi.org/10.1007/s00431-015-2628-z

    CrossRef  Google Scholar 

  12. Seigfried-Spellar KC (2012) Measuring the preference of image content for self-reported consumers of child pornography, pp 81–90. Published. https://doi.org/10.1007/978-3-642-39891-9_6

    CrossRef  Google Scholar 

  13. Gladyshev P, Marrington A, Baggili I (2015) Digital forensics and cyber crime. Springer, Berlin. https://doi.org/10.1007/978-3-642-35515-8

    CrossRef  Google Scholar 

  14. Demirjian A, Goldstein H, Tanner J (1973) A new system of dental age assessment. Hum Biol 45:211–227

    Google Scholar 

  15. Moorrees CF, Fanning EA, Hunt EE Jr (1963) Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol 21(2):205–213. https://doi.org/10.1002/ajpa.1330210212

    CrossRef  Google Scholar 

  16. Anda F, Lillis D, Le-Khac N, Scanlon M (2018) Evaluating automated facial age estimation techniques for digital forensics, pp 129–139. Published. https://doi.org/10.1109/SPW.2018.00028

    CrossRef  Google Scholar 

  17. Sehrawat D, Gill NS (2018) Emerging trends and future computing technologies: a vision for smart environment. Int J Adv Res Comput Sci 9(2):839. https://doi.org/10.1109/TIFS.2014.2359646

    CrossRef  Google Scholar 

  18. Shejul AA, Kinage KS, Reddy BE (2017) Comprehensive review on facial based human age estimation, pp 3211–3216. Published. https://doi.org/10.1109/ICECDS.2017.8390049

    CrossRef  Google Scholar 

  19. C. f. D. C. a. P (2019) Chronic diseases: the leading causes of death and disability in the United States. 01/08/2019. https://www.cdc.gov/chronicdisease/resources/infographic/chronic-diseases.htm

  20. Dantcheva A, Elia P, Ross A (2015) What else does your biometric data reveal? A survey on soft biometrics. IEEE Trans Inf Forensics Secur 11(3):441–467. https://doi.org/10.1109/TIFS.2015.2480381

    CrossRef  Google Scholar 

  21. Fu Y, Huang TS (2008) Human age estimation with regression on discriminative aging manifold. IEEE Trans Multimedia 10(4):578–584. https://doi.org/10.1109/TMM.2008.921847

    CrossRef  Google Scholar 

  22. Guo G, Mu G, Fu Y, Huang TS (2009) Human age estimation using bio-inspired features, pp 112–119. Published. https://doi.org/10.1109/CVPR.2009.5206681

    CrossRef  Google Scholar 

  23. Tian Q, Chen S (2015) Cumulative attribute relation regularization learning for human age estimation. Neurocomputing 165:456–467. https://doi.org/10.1016/j.neucom.2015.03.078

    CrossRef  Google Scholar 

  24. Demirjian A, Goldstein H, Tanner JM (1973) A new system of dental age assessment. Hum Biol 45(2):211–227

    Google Scholar 

  25. Moorrees CFA, Fanning EA, Hunt EE Jr (1963) Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol 21(2):205–213. https://doi.org/10.1002/ajpa.1330210212

    CrossRef  Google Scholar 

  26. Wang J, Shang Y, Su G, Lin X (2006) Sim0075lation of aging effects in face images. In: Intelligent computing in signal processing and pattern recognition. Springer, Berlin, pp 517–527

    CrossRef  Google Scholar 

  27. Guo G, Guowang M, Fu Y, Huang TS (2009) Human age estimation using bio-inspired features, pp 112–119. Published. https://doi.org/10.1109/CVPR.2009.5206681

    CrossRef  Google Scholar 

  28. Chang K, Chen C (2015) A learning framework for age rank estimation based on face images with scattering transform. IEEE Trans Image Process 24(3):785–798. https://doi.org/10.1109/TIP.2014.2387379

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Guo G, Fu Y, Dyer CR, Huang TS (2008) Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans Image Process 17(7):1178–1188. https://doi.org/10.1109/TIP.2008.924280

    CrossRef  MathSciNet  Google Scholar 

  30. Anand A, Labati RD, Genovese A, Muñoz E, Piuri V, Scotti F (2017) Age estimation based on face images and pre-trained convolutional neural networks, pp 1–7. Published. https://doi.org/10.1109/SSCI.2017.8285381

    CrossRef  Google Scholar 

  31. Rojas R (2013) Neural networks: a systematic introduction. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  32. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York

    MATH  Google Scholar 

  33. Fukushima K (1988) Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1(2):119–130. https://doi.org/10.1016/0893-6080(88)90014-7

    CrossRef  Google Scholar 

  34. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

    MathSciNet  MATH  Google Scholar 

  35. Kumar SK (2017) On weight initialization in deep neural networks. arXiv preprint arXiv:1704.08863

    Google Scholar 

  36. Jayaraman J, King N, Roberts G, Wong H (2011) Dental age assessment: are Demirjian’s standards appropriate for southern Chinese children? J Forensic Odontostomatol 29(2):22

    Google Scholar 

  37. Chudasama PN, Roberts GJ, Lucas VS (2012) Dental age assessment (DAA): a study of a Caucasian population at the 13 year threshold. J Forensic Legal Med 19(1):22–28. https://doi.org/10.1016/j.jflm.2011.09.008

    CrossRef  Google Scholar 

  38. Jayaraman J, Wong HM, King NM, Roberts GJ (2013) The French–Canadian data set of Demirjian for dental age estimation: a systematic review and meta-analysis. J Forensic Legal Med 20(5):373–381. https://doi.org/10.1016/j.jflm.2013.03.015

    CrossRef  Google Scholar 

  39. Štern D, Kainz P, Payer C, Urschler M (2017) Multi-factorial age estimation from skeletal and dental MRI volumes, pp 61–69, Published

    Google Scholar 

  40. Panis G, Lanitis A, Tsapatsoulis N, Cootes TF (2016) Overview of research on facial ageing using the FG-NET ageing database. IET Biometrics 5., https://digital-library.theiet.org/content/journals/10.1049/iet-bmt.2014.0053

  41. Ricanek K, Tesafaye T (2006) MORPH: a longitudinal image database of normal adult age-progression, pp 341–345. Published. https://doi.org/10.1109/FGR.2006.78

    CrossRef  Google Scholar 

  42. Ueki K, Hayashida T, Kobayashi T (2006) Subspace-based age-group classification using facial images under various lighting conditions, pp 6–48. Published. https://doi.org/10.1109/FGR.2006.102

    CrossRef  Google Scholar 

  43. Fu Y, Zheng N (2006) M-face: an appearance-based photorealistic model for multiple facial attributes rendering. IEEE Trans Circuits Syst Video Technol 16(7):830–842. https://doi.org/10.1109/TCSVT.2006.877398

    CrossRef  Google Scholar 

  44. Burt DM, Perrett David I (1995) Perception of age in adult Caucasian male faces: computer graphic manipulation of shape and colour information. Proc R Soc Lond Ser B Biol Sci 259(1355):137–143. https://doi.org/10.1098/rspb.1995.0021

    CrossRef  Google Scholar 

  45. Suo J, Wu T, Zhu S, Shan S, Chen X, Gao W (2008) Design sparse features for age estimation using hierarchical face model, pp 1–6. Published. https://doi.org/10.1109/AFGR.2008.4813314

    CrossRef  Google Scholar 

  46. Fu Y, Guo G, Huang TS (2010) Age synthesis and estimation via faces: a survey. IEEE Trans Pattern Anal Mach Intell 32(11):1955–1976. https://doi.org/10.1109/TPAMI.2010.36

    CrossRef  Google Scholar 

  47. Azam B, Melika Abbasian N, Mohammad Mahdi D (2007) Iranian face database with age, pose and expression, pp 50–55. Published. https://doi.org/10.1109/ICMV.2007.4469272

    CrossRef  Google Scholar 

  48. Gallagher AC, Chen T (2009) Understanding images of groups of people, pp 256–263. Published. https://doi.org/10.1109/CVPR.2009.5206828

    CrossRef  Google Scholar 

  49. Ni B, Song Z, Yan S (2009) Web image mining towards universal age estimator. In: Proceedings of the 17th ACM international conference on multimedia, Beijing, China, pp 85–94. https://doi.org/10.1145/1631272.1631287

    CrossRef  Google Scholar 

  50. Sai Phyo K, Wang J, Eam Khwang T (2013) Web image mining for facial age estimation, pp 1–5. Published. https://doi.org/10.1109/ICICS.2013.6782962

    CrossRef  Google Scholar 

  51. Sun Y, Wang X, Tang X (2013) Deep convolutional network cascade for facial point detection, pp 3476–3483. Published. https://doi.org/10.1109/CVPR.2013.446

    CrossRef  Google Scholar 

  52. Jain V, Learned-Miller E (2010) Fddb: A benchmark for face detection in unconstrained settings, UMass Amherst Technical Report. http://works.bepress.com/erik_learned_miller/55/

  53. Levi G, Hassncer T (2015) Age and gender classification using convolutional neural networks, pp 34–42. Published. https://doi.org/10.1109/CVPRW.2015.7301352

    CrossRef  Google Scholar 

  54. Escalera S, Fabian J, Pardo P, Baró X, Gonzàlez J, Escalante HJ, Misevic D, Steiner U, Guyon I (2015) ChaLearn looking at people 2015: apparent age and cultural event recognition datasets and results, pp 243–251. Published. https://doi.org/10.1109/ICCVW.2015.40

    CrossRef  Google Scholar 

  55. Rothe R, Timofte R, Gool LV (2015) DEX: deep expectation of apparent age from a single image, pp 252–257. Published. https://doi.org/10.1109/ICCVW.2015.41

    CrossRef  Google Scholar 

  56. Berg A, Deng J, Fei-Fei L (2010) Large scale visual recognition challenge (ILSVRC), 2010, vol 3. URL http://www.image-net.org/challenges/LSVRC

  57. Hosseini S, Lee SH, Kwon HJ, Koo HI, Cho NI (2018) Age and gender classification using wide convolutional neural network and Gabor filter, pp 1–3. Published. https://doi.org/10.1109/IWAIT.2018.8369721

    CrossRef  Google Scholar 

  58. Liu X, Li S, Kan M, Zhang J, Wu S, Liu W, Han H, Shan S, Chen X (2015) AgeNet: deeply learned regressor and classifier for robust apparent age estimation, pp 258–266. Published. https://doi.org/10.1109/ICCVW.2015.42

    CrossRef  Google Scholar 

  59. Liu K, Liu H, Chan PK, Liu T, Pei S (2018) Age estimation via fusion of depthwise separable convolutional neural networks, pp 1–8. Published. https://doi.org/10.1109/WIFS.2018.8630776

    CrossRef  Google Scholar 

  60. Shang C, Ai H (2017) Cluster convolutional neural networks for facial age estimation, pp 1817–1821. Published. https://doi.org/10.1109/ICIP.2017.8296595

    CrossRef  Google Scholar 

  61. Chen S, Zhang C, Dong M, Le J, Rao M (2017) Using ranking-CNN for age estimation:742–751. Published. https://doi.org/10.1109/CVPR.2017.86

  62. Duan M, Li K, Li K (2018) An ensemble CNN2ELM for age estimation. IEEE Trans Inf Forensics Secur 13(3):758–772. https://doi.org/10.1109/TIFS.2017.2766583

    CrossRef  Google Scholar 

  63. Smith P, Chen C (2018) Transfer learning with deep CNNs for gender recognition and age estimation, pp 2564–2571. Published. https://doi.org/10.1109/BigData.2018.8621891

    CrossRef  Google Scholar 

  64. Zhang H, Geng X, Zhang Y, Cheng F (2019) Recurrent age estimation. Pattern Recogn Lett 125:271–277. https://doi.org/10.1016/j.patrec.2019.05.002

    CrossRef  Google Scholar 

  65. Paes EC, Teepen HJLJM, Koop WA, Kon M (2009) Perioral wrinkles: histologic differences between men and women. Aesthet Surg J 29(6):467–472. https://doi.org/10.1016/j.asj.2009.08.018

    CrossRef  Google Scholar 

  66. De Tobel J, Radesh P, Vandermeulen D, Thevissen PW (2017) An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J Forensic Odontostomatol 35(2):42–54

    Google Scholar 

  67. Kim J, Bae W, Jung KH, Song IS (2019) Development and validation of deep learning-based algorithms for the estimation of chronological age using panoramic dental x-ray images

    Google Scholar 

  68. Huang G, Liu Z, Maaten L v d, Weinberger KQ (2017) Densely connected convolutional networks, pp 2261–2269. Published. https://doi.org/10.1109/CVPR.2017.243

    CrossRef  Google Scholar 

  69. Al-Khateeb H, Epiphaniou G, Reviczky A, Karadimas P, Heidari H (2018) Proactive threat detection for connected cars using recursive Bayesian estimation. IEEE Sensors J 18(12):4822–4831. https://doi.org/10.1109/JSEN.2017.2782751

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haider Al-Khateeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alkaabi, S., Yussof, S., Al-Khateeb, H., Ahmadi-Assalemi, G., Epiphaniou, G. (2020). Deep Convolutional Neural Networks for Forensic Age Estimation: A Review. In: Jahankhani, H., Kendzierskyj, S., Chelvachandran, N., Ibarra, J. (eds) Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35746-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35746-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35745-0

  • Online ISBN: 978-3-030-35746-7

  • eBook Packages: Computer ScienceComputer Science (R0)