Skip to main content

The Multifaceted Effects of Autophagy on the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1225))

Abstract

The tumor microenvironment is composed of cancer cells, noncancer cells (e.g., immune cells, stromal cells, endothelial cells, and adipocytes), and various mediators (e.g., cytokines, chemokines, growth factors, and humoral factors) that work together to support cancer growth, progression, and resistance to therapies. Autophagy is an evolutionarily conserved degradation mechanism by which various cytosolic cargos (e.g., damaged organelles, unused molecules, or invaded pathogens) are engulfed by double-membrane autophagosomes, and then delivered into the lysosome for degradation and recycling. The level of autophagy is a crucial threshold to either promote cell survival or induce cell death in response to environmental stresses. Autophagy plays a context-dependent role in tumorigenesis and anticancer therapy via shaping the inflammatory, hypoxic, immunosuppressive, and metabolic tumor microenvironment. In particular, impaired autophagy flux is associated with chronic inflammation, immunosuppression, stromal formation, cancer stemness, angiogenesis, metastasis, and metabolic reprogramming in the tumor microenvironment. Understanding the molecular machinery of autophagy and its communication with hallmarks of cancer could lead to potential new anticancer strategies or drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Akhtar M, Haider A, Rashid S, Al-Nabet A (2019) Paget’s “seed and soil” theory of cancer metastasis: an idea whose time has come. Adv Anat Pathol 26:69–74. https://doi.org/10.1097/PAP.0000000000000219

    Article  CAS  PubMed  Google Scholar 

  3. Binnewies M et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550. https://doi.org/10.1038/s41591-018-0014-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  5. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR (2019) Targeting tumor microenvironment for cancer therapy. Int J Mol Sci 20:E840. https://doi.org/10.3390/ijms20040840

    Article  CAS  PubMed  Google Scholar 

  6. Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822. https://doi.org/10.1038/ncb0910-814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7:673–682

    Article  CAS  PubMed  Google Scholar 

  9. Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381. https://doi.org/10.1038/s41580-018-0001-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428:1714–1724. https://doi.org/10.1016/j.jmb.2016.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. https://doi.org/10.1016/j.cell.2007.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542. https://doi.org/10.1038/nrc.2017.53

    Article  CAS  PubMed  Google Scholar 

  14. Singh SS et al (2018) Dual role of autophagy in hallmarks of cancer. Oncogene 37:1142–1158. https://doi.org/10.1038/s41388-017-0046-6

    Article  CAS  PubMed  Google Scholar 

  15. Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  16. Thumm M et al (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349:275–280

    Article  CAS  PubMed  Google Scholar 

  17. Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602

    Article  CAS  PubMed  Google Scholar 

  18. Xie Y et al (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11:28–45. https://doi.org/10.4161/15548627.2014.984267

    Article  CAS  PubMed  Google Scholar 

  19. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364. https://doi.org/10.1038/s41580-018-0003-4

    Article  CAS  PubMed  Google Scholar 

  20. Zachari M, Ganley IG (2017) The mammalian ULK1 complex and autophagy initiation. Essays Biochem 61:585–596. https://doi.org/10.1042/EBC20170021

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32. https://doi.org/10.1172/JCI73939

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tamargo-Gomez I, Marino GAMPK (2018) Regulation of metabolic dynamics in the context of autophagy. Int J Mol Sci 19:E3812. https://doi.org/10.3390/ijms19123812

    Article  CAS  PubMed  Google Scholar 

  23. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohsumi Y, Mizushima N (2004) Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol 15:231–236

    Article  CAS  PubMed  Google Scholar 

  25. Eskelinen EL (2006) Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol Asp Med 27:495–502. https://doi.org/10.1016/j.mam.2006.08.005

    Article  CAS  Google Scholar 

  26. Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266. https://doi.org/10.1002/tera.1420070306

    Article  CAS  PubMed  Google Scholar 

  27. Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364. https://doi.org/10.1038/s41422-019-0164-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Doherty J, Baehrecke EH (2018) Life, death and autophagy. Nat Cell Biol 20:1110–1117. https://doi.org/10.1038/s41556-018-0201-5

    Article  CAS  PubMed  Google Scholar 

  29. Galluzzi L et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541. https://doi.org/10.1038/s41418-017-0012-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cadwell K, Debnath J (2018) Beyond self-eating: the control of nonautophagic functions and signaling pathways by autophagy-related proteins. J Cell Biol 217:813–822. https://doi.org/10.1083/jcb.201706157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. https://doi.org/10.1016/j.molcel.2010.09.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137. https://doi.org/10.1146/annurev-pathol-020712-163918

    Article  CAS  PubMed  Google Scholar 

  33. Marino G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94. https://doi.org/10.1038/nrm3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilhelm T, Richly H (2018) Autophagy during ageing—from Dr Jekyll to Mr Hyde. FEBS J 285:2367–2376. https://doi.org/10.1111/febs.14453

    Article  CAS  PubMed  Google Scholar 

  35. Tsujimoto Y, Shimizu S (2005) Another way to die: autophagic programmed cell death. Cell Death Differ 12(Suppl 2):1528–1534. https://doi.org/10.1038/sj.cdd.4401777

    Article  CAS  PubMed  Google Scholar 

  36. Chen Z, Liu X, Ma S (2016) The roles of mitochondria in autophagic cell death. Cancer Biother Radiopharm 31:269–276. https://doi.org/10.1089/cbr.2016.2057

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y et al (2013) Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A 110:20364–20371. https://doi.org/10.1073/pnas.1319661110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goodall ML et al (2016) The autophagy machinery controls cell death switching between apoptosis and necroptosis. Dev Cell 37:337–349. https://doi.org/10.1016/j.devcel.2016.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Basit F, Cristofanon S, Fulda S (2013) Obatoclax (GX15-070) triggers necroptosis by promoting the assembly of the necrosome on autophagosomal membranes. Cell Death Differ 20:1161–1173. https://doi.org/10.1038/cdd.2013.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gump JM et al (2014) Autophagy variation within a cell population determines cell fate through selective degradation of Fap-1. Nat Cell Biol 16:47–54. https://doi.org/10.1038/ncb2886

    Article  CAS  PubMed  Google Scholar 

  41. He W et al (2014) A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene 33:3004–3013. https://doi.org/10.1038/onc.2013.256

    Article  CAS  PubMed  Google Scholar 

  42. Hou W et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428. https://doi.org/10.1080/15548627.2016.1187366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou B et al (2019) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.03.002

  44. Bai Y et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508:997–1003. https://doi.org/10.1016/j.bbrc.2018.12.039

    Article  CAS  PubMed  Google Scholar 

  45. Yang M et al (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5:aaw2238. https://doi.org/10.1126/sciadv.aaw2238

    Article  CAS  Google Scholar 

  46. Song X et al (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(−) activity. Curr Biol 28:2388–2399.e2385. https://doi.org/10.1016/j.cub.2018.05.094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao H et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503:1550–1556. https://doi.org/10.1016/j.bbrc.2018.07.078

    Article  CAS  PubMed  Google Scholar 

  48. Seillier M et al (2012) TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ 19:1525–1535. https://doi.org/10.1038/cdd.2012.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yu SW et al (2008) Autophagic death of adult hippocampal neural stem cells following insulin withdrawal. Stem Cells 26:2602–2610. https://doi.org/10.1634/stemcells.2008-0153

    Article  PubMed  Google Scholar 

  50. Wang M et al (2016) Silibinin prevents autophagic cell death upon oxidative stress in cortical neurons and cerebral ischemia-reperfusion injury. Mol Neurobiol 53:932–943. https://doi.org/10.1007/s12035-014-9062-5

    Article  CAS  PubMed  Google Scholar 

  51. Murata M (2018) Inflammation and cancer. Environ Health Prev Med 23:50. https://doi.org/10.1186/s12199-018-0740-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ritter B, Greten FR (2019) Modulating inflammation for cancer therapy. J Exp Med 216:1234–1243. https://doi.org/10.1084/jem.20181739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469:323–335. https://doi.org/10.1038/nature09782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Harris J et al (2017) Autophagy and inflammasomes. Mol Immunol 86:10–15. https://doi.org/10.1016/j.molimm.2017.02.013

    Article  CAS  PubMed  Google Scholar 

  55. Monkkonen T, Debnath J (2018) Inflammatory signaling cascades and autophagy in cancer. Autophagy 14:190–198. https://doi.org/10.1080/15548627.2017.1345412

    Article  CAS  PubMed  Google Scholar 

  56. Tang D et al (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310. https://doi.org/10.1038/onc.2010.261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thorburn J et al (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16:175–183. https://doi.org/10.1038/cdd.2008.143

    Article  PubMed  Google Scholar 

  58. Luo MX et al (2015) Autophagy mediates HBx-induced nuclear factor-kappaB activation and release of IL-6, IL-8, and CXCL2 in hepatocytes. J Cell Physiol 230:2382–2389. https://doi.org/10.1002/jcp.24967

    Article  CAS  PubMed  Google Scholar 

  59. Kang R et al (2014) HMGB1 in health and disease. Mol Aspects Med 40:1–116. https://doi.org/10.1016/j.mam.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  60. Sun X, Tang D (2014) HMGB1-dependent and -independent autophagy. Autophagy 10:1873–1876. https://doi.org/10.4161/auto.32184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tang D et al (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892. https://doi.org/10.1083/jcb.200911078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kang R, Zhang Q, Zeh HJ 3rd, Lotze MT, Tang D (2013) HMGB1 in cancer: good, bad, or both? Clin Cancer Res 19:4046–4057. https://doi.org/10.1158/1078-0432.CCR-13-0495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang R et al (2012) The expression of the receptor for advanced glycation endproducts (RAGE) is permissive for early pancreatic neoplasia. Proc Natl Acad Sci U S A 109:7031–7036. https://doi.org/10.1073/pnas.1113865109

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhan Z et al (2014) Autophagy facilitates TLR4- and TLR3-triggered migration and invasion of lung cancer cells through the promotion of TRAF6 ubiquitination. Autophagy 10:257–268. https://doi.org/10.4161/auto.27162

    Article  CAS  PubMed  Google Scholar 

  65. Takamura A et al (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800. https://doi.org/10.1101/gad.2016211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kuma A, Komatsu M, Mizushima N (2017) Autophagy-monitoring and autophagy-deficient mice. Autophagy 13:1619–1628. https://doi.org/10.1080/15548627.2017.1343770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998. https://doi.org/10.1038/ni1102-991

    Article  CAS  PubMed  Google Scholar 

  68. Farhood B, Najafi M, Mortezaee K (2019) CD8(+) cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 234:8509–8521. https://doi.org/10.1002/jcp.27782

    Article  CAS  PubMed  Google Scholar 

  69. Guillerey C, Huntington ND, Smyth MJ (2016) Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17:1025–1036. https://doi.org/10.1038/ni.3518

    Article  CAS  PubMed  Google Scholar 

  70. Lesterhuis WJ et al (2017) Dynamic versus static biomarkers in cancer immune checkpoint blockade: unravelling complexity. Nat Rev Drug Discov 16:264–272. https://doi.org/10.1038/nrd.2016.233

    Article  CAS  PubMed  Google Scholar 

  71. Jia W, He YW (2011) Temporal regulation of intracellular organelle homeostasis in T lymphocytes by autophagy. J Immunol 186:5313–5322. https://doi.org/10.4049/jimmunol.1002404

    Article  CAS  PubMed  Google Scholar 

  72. Mattson E, Xu L, Li L, Liu GE, Xiao Z (2014) Transcriptome profiling of CTLs regulated by rapamycin using RNA-Seq. Immunogenetics 66:625–633. https://doi.org/10.1007/s00251-014-0790-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yeo SK, Wen J, Chen S, Guan JL (2016) Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfbeta/Smad signaling. Cancer Res 76:3397–3410. https://doi.org/10.1158/0008-5472.CAN-15-2946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rao S et al (2014) A dual role for autophagy in a murine model of lung cancer. Nat Commun 5:3056. https://doi.org/10.1038/ncomms4056

    Article  CAS  PubMed  Google Scholar 

  75. DeVorkin L et al (2019) Autophagy regulation of metabolism is required for CD8(+) T cell anti-tumor immunity. Cell Rep 27:502–513.e505. https://doi.org/10.1016/j.celrep.2019.03.037

    Article  CAS  PubMed  Google Scholar 

  76. Janji B, Berchem G, Chouaib S (2018) Targeting autophagy in the tumor microenvironment: new challenges and opportunities for regulating tumor immunity. Front Immunol 9:887. https://doi.org/10.3389/fimmu.2018.00887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li CJ, Liao WT, Wu MY, Chu PY (2017) New insights into the role of autophagy in tumor immune microenvironment. Int J Mol Sci 18:E1566. https://doi.org/10.3390/ijms18071566

    Article  CAS  PubMed  Google Scholar 

  78. Baghdadi M et al (2013) TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity 39:1070–1081. https://doi.org/10.1016/j.immuni.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  79. Munz C (2019) Autophagy proteins influence endocytosis for MHC restricted antigen presentation. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.03.005

  80. Sanjurjo L et al (2018) CD5L promotes M2 macrophage polarization through autophagy-mediated upregulation of ID3. Front Immunol 9:480. https://doi.org/10.3389/fimmu.2018.00480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shan M et al (2017) Autophagy suppresses isoprenaline-induced M2 macrophage polarization via the ROS/ERK and mTOR signaling pathway. Free Radic Biol Med 110:432–443. https://doi.org/10.1016/j.freeradbiomed.2017.05.021

    Article  CAS  PubMed  Google Scholar 

  82. Alissafi T et al (2018) Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells. J Clin Invest 128:3840–3852. https://doi.org/10.1172/JCI120888

    Article  PubMed  PubMed Central  Google Scholar 

  83. Liu F et al (2016) Ceramide activates lysosomal cathepsin B and cathepsin D to attenuate autophagy and induces ER stress to suppress myeloid-derived suppressor cells. Oncotarget 7:83907–83925. https://doi.org/10.18632/oncotarget.13438

    Article  PubMed  PubMed Central  Google Scholar 

  84. Li C et al (2018) PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev Cell 46:441–455.e448. https://doi.org/10.1016/j.devcel.2018.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang A et al (2018) Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov 8:276–287. https://doi.org/10.1158/2159-8290.CD-17-0952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim S et al (2014) Radiation-induced autophagy potentiates immunotherapy of cancer via up-regulation of mannose 6-phosphate receptor on tumor cells in mice. Cancer Immunol Immunother 63:1009–1021. https://doi.org/10.1007/s00262-014-1573-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liang X et al (2012) Inhibiting systemic autophagy during interleukin 2 immunotherapy promotes long-term tumor regression. Cancer Res 72:2791–2801. https://doi.org/10.1158/0008-5472.CAN-12-0320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ramakrishnan R et al (2012) Autophagy induced by conventional chemotherapy mediates tumor cell sensitivity to immunotherapy. Cancer Res 72:5483–5493. https://doi.org/10.1158/0008-5472.CAN-12-2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Noman MZ et al (2011) Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res 71:5976–5986. https://doi.org/10.1158/0008-5472.CAN-11-1094

    Article  CAS  PubMed  Google Scholar 

  90. Casares N et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202:1691–1701. https://doi.org/10.1084/jem.20050915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Michaud M et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334:1573–1577. https://doi.org/10.1126/science.1208347

    Article  CAS  PubMed  Google Scholar 

  92. Apetoh L et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  CAS  PubMed  Google Scholar 

  93. Noman MZ et al (2009) The cooperative induction of hypoxia-inducible factor-1 alpha and STAT3 during hypoxia induced an impairment of tumor susceptibility to CTL-mediated cell lysis. J Immunol 182:3510–3521. https://doi.org/10.4049/jimmunol.0800854

    Article  CAS  PubMed  Google Scholar 

  94. Mgrditchian T et al (2017) Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc Natl Acad Sci U S A 114:E9271–E9279. https://doi.org/10.1073/pnas.1703921114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Denton AE, Roberts EW, Fearon DT (2018) Stromal cells in the tumor microenvironment. Adv Exp Med Biol 1060:99–114. https://doi.org/10.1007/978-3-319-78127-3_6

    Article  CAS  PubMed  Google Scholar 

  96. Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18:99–115. https://doi.org/10.1038/s41573-018-0004-1

    Article  CAS  PubMed  Google Scholar 

  97. Kakarla S, Song XT, Gottschalk S (2012) Cancer-associated fibroblasts as targets for immunotherapy. Immunotherapy 4:1129–1138. https://doi.org/10.2217/imt.12.112

    Article  CAS  PubMed  Google Scholar 

  98. Noh H et al (2015) Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells. Cell Commun Signal 13:14. https://doi.org/10.1186/s12964-015-0093-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen L, Qiu X, Wang X, He J (2017) FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression. Biochem Biophys Res Commun 487:8–14. https://doi.org/10.1016/j.bbrc.2017.03.039

    Article  CAS  PubMed  Google Scholar 

  100. Wen X et al (2017) Fibroblast activation protein-alpha-positive fibroblasts promote gastric cancer progression and resistance to immune checkpoint blockade. Oncol Res 25:629–640. https://doi.org/10.3727/096504016X14768383625385

    Article  PubMed  PubMed Central  Google Scholar 

  101. Yan Y et al (2019) The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 38:171. https://doi.org/10.1186/s13046-019-1172-5

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bonuccelli G et al (2010) Ketones and lactate “fuel” tumor growth and metastasis: evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle 9:3506–3514. https://doi.org/10.4161/cc.9.17.12731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Martinez-Outschoorn UE et al (2010) Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: a new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle 9:3256–3276. https://doi.org/10.4161/cc.9.16.12553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yoshida GJ (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J Exp Clin Cancer Res 34:111. https://doi.org/10.1186/s13046-015-0221-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Martinez-Outschoorn UE et al (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle 9:3515–3533. https://doi.org/10.4161/cc.9.17.12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinez-Outschoorn UE, Lisanti MP, Sotgia F (2014) Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth. Semin Cancer Biol 25:47–60. https://doi.org/10.1016/j.semcancer.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  107. Sotgia F et al (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467. https://doi.org/10.1146/annurev-pathol-011811-120856

    Article  CAS  PubMed  Google Scholar 

  108. Trimmer C et al (2011) Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: a new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther 11:383–394. https://doi.org/10.4161/cbt.11.4.14101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Martinez-Outschoorn UE et al (2011) Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 12:924–938. https://doi.org/10.4161/cbt.12.10.17780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Albini A, Bruno A, Noonan DM, Mortara L (2018) Contribution to tumor angiogenesis from innate immune cells within the tumor microenvironment: implications for immunotherapy. Front Immunol 9:527. https://doi.org/10.3389/fimmu.2018.00527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Samples J, Willis M, Klauber-Demore N (2013) Targeting angiogenesis and the tumor microenvironment. Surg Oncol Clin N Am 22:629–639. https://doi.org/10.1016/j.soc.2013.06.002

    Article  PubMed  PubMed Central  Google Scholar 

  112. Labiano S, Palazon A, Melero I (2015) Immune response regulation in the tumor microenvironment by hypoxia. Semin Oncol 42:378–386. https://doi.org/10.1053/j.seminoncol.2015.02.009

    Article  CAS  PubMed  Google Scholar 

  113. Vaupel P, Multhoff G (2018) Hypoxia-/HIF-1alpha-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. Adv Exp Med Biol 1072:171–175. https://doi.org/10.1007/978-3-319-91287-5_27

    Article  CAS  PubMed  Google Scholar 

  114. Epstein AC et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  115. De Francesco EM et al (2013) HIF-1alpha/GPER signaling mediates the expression of VEGF induced by hypoxia in breast cancer associated fibroblasts (CAFs). Breast Cancer Res 15:R64. https://doi.org/10.1186/bcr3458

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bellot G et al (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29:2570–2581. https://doi.org/10.1128/MCB.00166-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Li X et al (2019) Hypoxia-induced autophagy of stellate cells inhibits expression and secretion of lumican into microenvironment of pancreatic ductal adenocarcinoma. Cell Death Differ 26:382–393. https://doi.org/10.1038/s41418-018-0207-3

    Article  CAS  PubMed  Google Scholar 

  118. Mazure NM, Pouyssegur J (2009) Atypical BH3-domains of BNIP3 and BNIP3L lead to autophagy in hypoxia. Autophagy 5:868–869. https://doi.org/10.4161/auto.9042

    Article  PubMed  Google Scholar 

  119. Noman MZ, Janji B, Berchem G, Mami-Chouaib F, Chouaib S (2012) Hypoxia-induced autophagy: a new player in cancer immunotherapy? Autophagy 8:704–706. https://doi.org/10.4161/auto.19572

    Article  CAS  PubMed  Google Scholar 

  120. Hasmim M et al (2017) Cutting edge: NANOG activates autophagy under hypoxic stress by binding to BNIP3L promoter. J Immunol 198:1423–1428. https://doi.org/10.4049/jimmunol.1600981

    Article  CAS  PubMed  Google Scholar 

  121. Hasmim M et al (2013) Cutting edge: hypoxia-induced Nanog favors the intratumoral infiltration of regulatory T cells and macrophages via direct regulation of TGF-beta1. J Immunol 191:5802–5806. https://doi.org/10.4049/jimmunol.1302140

    Article  CAS  PubMed  Google Scholar 

  122. Gubbiotti MA, Buraschi S, Kapoor A, Iozzo RV (2019) Proteoglycan signaling in tumor angiogenesis and endothelial cell autophagy. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.05.003

  123. Kumar S et al (2013) Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis 4:e889. https://doi.org/10.1038/cddis.2013.399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ramakrishnan S, Nguyen TM, Subramanian IV, Kelekar A (2007) Autophagy and angiogenesis inhibition. Autophagy 3:512–515. https://doi.org/10.4161/auto.4734

    Article  CAS  PubMed  Google Scholar 

  125. Maes H, Kuchnio A, Carmeliet P, Agostinis P (2016) Chloroquine anticancer activity is mediated by autophagy-independent effects on the tumor vasculature. Mol Cell Oncol 3:e970097. https://doi.org/10.4161/23723548.2014.970097

    Article  CAS  PubMed  Google Scholar 

  126. Maes H et al (2014) Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26:190–206. https://doi.org/10.1016/j.ccr.2014.06.025

    Article  CAS  PubMed  Google Scholar 

  127. Dong W et al (2018) RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy 14:1677–1692. https://doi.org/10.1080/15548627.2018.1476811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Roy Choudhury A, Gupta S, Chaturvedi PK, Kumar N, Pandey D (2019) Mechanobiology of cancer stem cells and their niche. Cancer Microenviron 12:17–27. https://doi.org/10.1007/s12307-019-00222-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Turdo A et al (2019) Meeting the challenge of targeting cancer stem cells. Front Cell Dev Biol 7:16. https://doi.org/10.3389/fcell.2019.00016

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang J, Li Q, Chang AE (2019) Immunologic targeting of cancer stem cells. Surg Oncol Clin N Am 28:431–445. https://doi.org/10.1016/j.soc.2019.02.010

    Article  PubMed  Google Scholar 

  131. Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F (2019) Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ 26:690–702. https://doi.org/10.1038/s41418-019-0292-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith AG, Macleod KF (2019) Autophagy, cancer stem cells and drug resistance. J Pathol 247:708–718. https://doi.org/10.1002/path.5222

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pascolo S (2016) Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 771:139–144. https://doi.org/10.1016/j.ejphar.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  134. Gong C et al (2013) Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene 32:2261–2272, 2272e.1–11. https://doi.org/10.1038/onc.2012.252

    Article  CAS  PubMed  Google Scholar 

  135. Cicchini M et al (2014) Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy 10:2036–2052. https://doi.org/10.4161/auto.34398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fu Y et al (2014) Resveratrol inhibits breast cancer stem-like cells and induces autophagy via suppressing Wnt/beta-catenin signaling pathway. PLoS One 9:e102535. https://doi.org/10.1371/journal.pone.0102535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim H, Kim Y, Jeoung D (2017) DDX53 promotes cancer stem cell-like properties and autophagy. Mol Cells 40:54–65. https://doi.org/10.14348/molcells.2017.2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kumar D, Shankar S, Srivastava RK (2014) Rottlerin induces autophagy and apoptosis in prostate cancer stem cells via PI3K/Akt/mTOR signaling pathway. Cancer Lett 343:179–189. https://doi.org/10.1016/j.canlet.2013.10.003

    Article  CAS  PubMed  Google Scholar 

  139. Li X et al (2016) shRNA-mediated AMBRA1 knockdown reduces the cisplatin-induced autophagy and sensitizes ovarian cancer cells to cisplatin. J Toxicol Sci 41:45–53. https://doi.org/10.2131/jts.41.45

    Article  CAS  PubMed  Google Scholar 

  140. Song YJ et al (2013) Autophagy contributes to the survival of CD133+ liver cancer stem cells in the hypoxic and nutrient-deprived tumor microenvironment. Cancer Lett 339:70–81. https://doi.org/10.1016/j.canlet.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  141. Yeo SK, Guan JL (2016) Hierarchical heterogeneity in mammary tumors and its regulation by autophagy. Autophagy 12:1960–1961. https://doi.org/10.1080/15548627.2016.1213928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schwartz L, Supuran CT, Alfarouk KO (2017) The Warburg effect and the hallmarks of cancer. Anti Cancer Agents Med Chem 17:164–170

    Article  CAS  Google Scholar 

  143. Bose S, Ramesh V, Locasale JW (2019) Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol 29:695. https://doi.org/10.1016/j.tcb.2019.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Munir R, Lisec J, Swinnen JV, Zaidi N (2019) Lipid metabolism in cancer cells under metabolic stress. Br J Cancer 120:1090. https://doi.org/10.1038/s41416-019-0451-4

    Article  PubMed  PubMed Central  Google Scholar 

  145. Poillet-Perez L, White E (2019) Role of tumor and host autophagy in cancer metabolism. Genes Dev 33:610–619. https://doi.org/10.1101/gad.325514.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Shahruzaman SH, Fakurazi S, Maniam S (2018) Targeting energy metabolism to eliminate cancer cells. Cancer Manag Res 10:2325–2335. https://doi.org/10.2147/CMAR.S167424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sun L, Suo C, Li ST, Zhang H, Gao P (2018) Metabolic reprogramming for cancer cells and their microenvironment: beyond the Warburg effect. Biochim Biophys Acta Rev Cancer 1870:51–66. https://doi.org/10.1016/j.bbcan.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  148. Huang X, Gan G, Wang X, Xu T, Xie W (2019) The HGF-MET axis coordinates liver cancer metabolism and autophagy for chemotherapeutic resistance. Autophagy 15:1258–1279. https://doi.org/10.1080/15548627.2019.1580105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Martinez-Outschoorn UE et al (2011) Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment. Int J Biochem Cell Biol 43:1045–1051. https://doi.org/10.1016/j.biocel.2011.01.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Roberts DJ, Miyamoto S (2015) Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 22:248–257. https://doi.org/10.1038/cdd.2014.173

    Article  CAS  PubMed  Google Scholar 

  151. Yao Z et al (2017) Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells. Cell Death Dis 8:e2633. https://doi.org/10.1038/cddis.2017.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bhatt V et al (2019) Autophagy modulates lipid metabolism to maintain metabolic flexibility for Lkb1-deficient Kras-driven lung tumorigenesis. Genes Dev 33:150–165. https://doi.org/10.1101/gad.320481.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Tabe Y et al (2017) Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res 77:1453–1464. https://doi.org/10.1158/0008-5472.CAN-16-1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yi M et al (2018) Emerging role of lipid metabolism alterations in cancer stem cells. J Exp Clin Cancer Res 37:118. https://doi.org/10.1186/s13046-018-0784-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wen YA et al (2017) Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer. Cell Death Dis 8:e2593. https://doi.org/10.1038/cddis.2017.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Venkatanarayan A et al (2015) IAPP-driven metabolic reprogramming induces regression of p53-deficient tumours in vivo. Nature 517:626–630. https://doi.org/10.1038/nature13910

    Article  CAS  PubMed  Google Scholar 

  157. Guo JY, White E (2013) Autophagy is required for mitochondrial function, lipid metabolism, growth, and fate of KRAS(G12D)-driven lung tumors. Autophagy 9:1636–1638. https://doi.org/10.4161/auto.26123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Strohecker AM et al (2013) Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov 3:1272–1285. https://doi.org/10.1158/2159-8290.CD-13-0397

    Article  CAS  PubMed  Google Scholar 

  159. Strohecker AM, White E (2014) Autophagy promotes BrafV600E-driven lung tumorigenesis by preserving mitochondrial metabolism. Autophagy 10:384–385. https://doi.org/10.4161/auto.27320

    Article  CAS  PubMed  Google Scholar 

  160. Kim HS et al (2015) Downregulation of choline kinase-alpha enhances autophagy in tamoxifen-resistant breast cancer cells. PLoS One 10:e0141110. https://doi.org/10.1371/journal.pone.0141110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ornelas A et al (2016) Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models. BMC Cancer 16:824. https://doi.org/10.1186/s12885-016-2850-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gao X et al (2018) Serine availability influences mitochondrial dynamics and function through lipid metabolism. Cell Rep 22:3507–3520. https://doi.org/10.1016/j.celrep.2018.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sousa CM et al (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536:479–483. https://doi.org/10.1038/nature19084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Aiello NM, Kang Y (2019) Context-dependent EMT programs in cancer metastasis. J Exp Med 216:1016–1026. https://doi.org/10.1084/jem.20181827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Poste G, Fidler IJ (1980) The pathogenesis of cancer metastasis. Nature 283:139–146

    Article  CAS  PubMed  Google Scholar 

  166. Mowers EE, Sharifi MN, Macleod KF (2017) Autophagy in cancer metastasis. Oncogene 36:1619–1630. https://doi.org/10.1038/onc.2016.333

    Article  CAS  PubMed  Google Scholar 

  167. Mowers EE, Sharifi MN, Macleod KF (2018) Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 285:1751–1766. https://doi.org/10.1111/febs.14388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kadandale P, Stender JD, Glass CK, Kiger AA (2010) Conserved role for autophagy in Rho1-mediated cortical remodeling and blood cell recruitment. Proc Natl Acad Sci U S A 107:10502–10507. https://doi.org/10.1073/pnas.0914168107

    Article  PubMed  PubMed Central  Google Scholar 

  169. Kenific CM, Debnath J (2016) NBR1-dependent selective autophagy is required for efficient cell-matrix adhesion site disassembly. Autophagy 12:1958–1959. https://doi.org/10.1080/15548627.2016.1212789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kenific CM et al (2016) NBR1 enables autophagy-dependent focal adhesion turnover. J Cell Biol 212:577–590. https://doi.org/10.1083/jcb.201503075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kenific CM, Wittmann T, Debnath J (2016) Autophagy in adhesion and migration. J Cell Sci 129:3685–3693. https://doi.org/10.1242/jcs.188490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Milano V, Piao Y, LaFortune T, de Groot J (2009) Dasatinib-induced autophagy is enhanced in combination with temozolomide in glioma. Mol Cancer Ther 8:394–406. https://doi.org/10.1158/1535-7163.MCT-08-0669

    Article  CAS  PubMed  Google Scholar 

  173. Sharifi MN et al (2016) Autophagy promotes focal adhesion disassembly and cell motility of metastatic tumor cells through the direct interaction of paxillin with LC3. Cell Rep 15:1660–1672. https://doi.org/10.1016/j.celrep.2016.04.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Tuloup-Minguez V, Greffard A, Codogno P, Botti J (2011) Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells. Autophagy 7:27–39. https://doi.org/10.4161/auto.7.1.13851

    Article  CAS  PubMed  Google Scholar 

  175. Daskalaki I, Gkikas I, Tavernarakis N (2018) Hypoxia and selective autophagy in cancer development and therapy. Front Cell Dev Biol 6:104. https://doi.org/10.3389/fcell.2018.00104

    Article  PubMed  PubMed Central  Google Scholar 

  176. Zhu H et al (2014) Upregulation of autophagy by hypoxia-inducible factor-1alpha promotes EMT and metastatic ability of CD133+ pancreatic cancer stem-like cells during intermittent hypoxia. Oncol Rep 32:935–942. https://doi.org/10.3892/or.2014.3298

    Article  CAS  PubMed  Google Scholar 

  177. Hardy SD, Shinde A, Wang WH, Wendt MK, Geahlen RL (2017) Regulation of epithelial-mesenchymal transition and metastasis by TGF-beta, P-bodies, and autophagy. Oncotarget 8:103302–103314. https://doi.org/10.18632/oncotarget.21871

    Article  PubMed  PubMed Central  Google Scholar 

  178. Jiang Y, Woosley AN, Sivalingam N, Natarajan S, Howe PH (2016) Cathepsin-B-mediated cleavage of Disabled-2 regulates TGF-beta-induced autophagy. Nat Cell Biol 18:851–863. https://doi.org/10.1038/ncb3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang H, Zhang Y, Wu Q, Wang YB, Wang W (2018) miR-16 mimics inhibit TGF-beta1-induced epithelial-to-mesenchymal transition via activation of autophagy in non-small cell lung carcinoma cells. Oncol Rep 39:247–254. https://doi.org/10.3892/or.2017.6088

    Article  CAS  PubMed  Google Scholar 

  180. Yao T et al (2016) Decorin-mediated inhibition of the migration of U87MG glioma cells involves activation of autophagy and suppression of TGF-beta signaling. FEBS Open Bio 6:707–719. https://doi.org/10.1002/2211-5463.12076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Kang or Daolin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kang, R., Zeh, H., Lotze, M., Tang, D. (2020). The Multifaceted Effects of Autophagy on the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1225. Springer, Cham. https://doi.org/10.1007/978-3-030-35727-6_7

Download citation

Publish with us

Policies and ethics