Skip to main content

Neutrophils in the Tumor Microenvironment

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1224))

Abstract

Neutrophils are the first responders to inflammation, infection, and injury. As one of the most abundant leukocytes in the immune system, neutrophils play an essential role in cancer progression, through multiple mechanisms, including promoting angiogenesis, immunosuppression, and cancer metastasis. Recent studies demonstrating elevated neutrophil to lymphocyte ratios suggest neutrophil as a potential therapeutic target and biomarker for disease status in cancer. This chapter will discuss the phenotypic and functional changes in the neutrophil in the tumor microenvironment, the underlying mechanism(s) of neutrophil facilitated cancer metastasis, and clinical potential of neutrophils as a prognostic/diagnostic marker and therapeutic target.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16:431–446

    Article  CAS  PubMed  Google Scholar 

  2. Selders GS, Fetz AE, Radic MZ, Bowlin GL (2017) An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 4:55–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kruger P, Saffarzadeh M, Weber AN, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D (2015) Neutrophils: between host defence, immune modulation, and tissue injury. PLoS Pathog 11:e1004651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Rosales C (2018) Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol 9:113

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mollinedo F (2019) Neutrophil degranulation, plasticity, and cancer metastasis. Trends Immunol 40:228–242

    Article  CAS  PubMed  Google Scholar 

  6. Grecian R, Whyte MKB, Walmsley SR (2018) The role of neutrophils in cancer. Br Med Bull 128:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y, Bissell MJ, Cox TR, Giaccia AJ, Erler JT, Hiratsuka S, Ghajar CM, Lyden D (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317

    Article  CAS  PubMed  Google Scholar 

  9. Janeway CA, Travers P, Walport M, Shlomchik MJ (2001) Immunobiology, 5th edn. Garland Science, New York

    Google Scholar 

  10. Wu L, Saxena S, Awaji M, Singh RK (2019) Tumor-associated neutrophils in cancer: going pro. Cancers (Basel) 11:E564

    Article  CAS  Google Scholar 

  11. Palmer C, Diehn M, Alizadeh AA, Brown PO (2006) Cell-type specific gene expression profiles of leukocytes in human peripheral blood. BMC Genomics 7:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA (1976) Neutrophil kinetics in man. J Clin Invest 58:705–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JA, Tesselaar K, Koenderman L (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116:625–627

    Article  CAS  PubMed  Google Scholar 

  14. Umansky V, Blattner C, Gebhardt C, Utikal J (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4:E36

    Article  CAS  Google Scholar 

  15. Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cowland JB, Borregaard N (2016) Granulopoiesis and granules of human neutrophils. Immunol Rev 273:11–28

    Article  CAS  PubMed  Google Scholar 

  17. Lawrence SM, Corriden R, Nizet V (2018) The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev 82:e00057–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP, Eckhaus M, Decker T, Wynshaw-Boris A, Xanthopoulos KG (1997) Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci U S A 94:13187–13192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fiedler K, Brunner C (2012) The role of transcription factors in the guidance of granulopoiesis. Am J Blood Res 2:57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Furze RC, Rankin SM (2008) Neutrophil mobilization and clearance in the bone marrow. Immunology 125:281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Beyrau M, Bodkin JV, Nourshargh S (2012) Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol 2:120134

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eash KJ, Means JM, White DW, Link DC (2009) CXCR4 is a key regulator of neutrophil release from the bone marrow under basal and stress granulopoiesis conditions. Blood 113:4711–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strydom N, Rankin SM (2013) Regulation of circulating neutrophil numbers under homeostasis and in disease. J Innate Immun 5:304–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furze RC, Rankin SM (2008) The role of the bone marrow in neutrophil clearance under homeostatic conditions in the mouse. FASEB J 22:3111–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM (2003) Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19:583–593

    Article  CAS  PubMed  Google Scholar 

  26. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER (2010) Neutrophil kinetics in health and disease. Trends Immunol 31:318–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ocana A, Nieto-Jimenez C, Pandiella A, Templeton AJ (2017) Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 16:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Leiding JW (2017) Neutrophil evolution and their diseases in humans. Front Immunol 8:1009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Hsieh MM, Everhart JE, Byrd-Holt DD, Tisdale JF, Rodgers GP (2007) Prevalence of neutropenia in the U.S. population: age, sex, smoking status, and ethnic differences. Ann Intern Med 146:486–492

    Article  PubMed  Google Scholar 

  30. Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14:302–314

    Article  CAS  PubMed  Google Scholar 

  31. Witter AR, Okunnu BM, Berg RE (2016) The essential role of neutrophils during infection with the intracellular bacterial pathogen Listeria monocytogenes. J Immunol 197:1557–1565

    Article  CAS  PubMed  Google Scholar 

  32. Pillay J, Ramakers BP, Kamp VM, Loi AL, Lam SW, Hietbrink F, Leenen LP, Tool AT, Pickkers P, Koenderman L (2010) Functional heterogeneity and differential priming of circulating neutrophils in human experimental endotoxemia. J Leukoc Biol 88:211–220

    Article  CAS  PubMed  Google Scholar 

  33. Lustberg MB (2012) Management of neutropenia in cancer patients. Clin Adv Hematol Oncol 10:825–826

    PubMed  PubMed Central  Google Scholar 

  34. Uribe-Querol E, Rosales C (2015) Neutrophils in cancer: two sides of the same coin. J Immunol Res 2015:983698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, Diehn M, West RB, Plevritis SK, Alizadeh AA (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21:938–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, Leibowitz-Amit R, Sonpavde G, Knox JJ, Tran B, Tannock IF, Amir E (2014) Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst 106:dju124

    Article  PubMed  CAS  Google Scholar 

  37. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl 97:77–89

    CAS  PubMed  Google Scholar 

  38. Brandau S, Moses K, Lang S (2013) The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? Semin Cancer Biol 23:171–182

    Article  CAS  PubMed  Google Scholar 

  39. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, Ariel A, Hovav AH, Henke E, Fridlender ZG, Granot Z (2015) Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10:562–573

    Article  CAS  PubMed  Google Scholar 

  40. Pillay J, Tak T, Kamp VM, Koenderman L (2013) Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 70:3813–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raber PL, Thevenot P, Sierra R, Wyczechowska D, Halle D, Ramirez ME, Ochoa AC, Fletcher M, Velasco C, Wilk A, Reiss K, Rodriguez PC (2014) Subpopulations of myeloid-derived suppressor cells impair T cell responses through independent nitric oxide-related pathways. Int J Cancer 134:2853–2864

    Article  CAS  PubMed  Google Scholar 

  42. Greten TF, Manns MP, Korangy F (2011) Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 11:802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Magcwebeba T, Dorhoi A, du Plessis N (2019) The emerging role of myeloid-derived suppressor cells in tuberculosis. Front Immunol 10:917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kolahian S, Oz HH, Zhou B, Griessinger CM, Rieber N, Hartl D (2016) The emerging role of myeloid-derived suppressor cells in lung diseases. Eur Respir J 47:967–977

    Article  CAS  PubMed  Google Scholar 

  45. Casbon AJ, Reynaud D, Park C, Khuc E, Gan DD, Schepers K, Passegue E, Werb Z (2015) Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112:E566–E575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eruslanov EB, Singhal S, Albelda SM (2017) Mouse versus human neutrophils in cancer: a major knowledge gap. Trends Cancer 3:149–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mouchemore KA, Anderson RL, Hamilton JA (2018) Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J 285:665–679

    Article  CAS  PubMed  Google Scholar 

  48. Shaul ME, Fridlender ZG (2017) Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol 102:343–349

    Article  CAS  PubMed  Google Scholar 

  49. Dale DC, Boxer L, Liles WC (2008) The phagocytes: neutrophils and monocytes. Blood 112:935–945

    Article  CAS  PubMed  Google Scholar 

  50. Peyron P, Maridonneau-Parini I, Stegmann T (2001) Fusion of human neutrophil phagosomes with lysosomes in vitro: involvement of tyrosine kinases of the Src family and inhibition by mycobacteria. J Biol Chem 276:35512–35517

    Article  CAS  PubMed  Google Scholar 

  51. Jankowski A, Scott CC, Grinstein S (2002) Determinants of the phagosomal pH in neutrophils. J Biol Chem 277:6059–6066

    Article  CAS  PubMed  Google Scholar 

  52. Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792

    Article  CAS  PubMed  Google Scholar 

  53. Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5:a012559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  55. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, Herber DL, Schneck J, Gabrilovich DI (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parekh A, Das S, Parida S, Das CK, Dutta D, Mallick SK, Wu PH, Kumar BNP, Bharti R, Dey G, Banerjee K, Rajput S, Bharadwaj D, Pal I, Dey KK, Rajesh Y, Jena BC, Biswas A, Banik P, Pradhan AK, Das SK, Das AK, Dhara S, Fisher PB, Wirtz D, Mills GB, Mandal M (2018) Multi-nucleated cells use ROS to induce breast cancer chemo-resistance in vitro and in vivo. Oncogene 37:4546–4561

    Article  CAS  PubMed  Google Scholar 

  57. Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  58. Dallegri F, Ottonello L, Ballestrero A, Dapino P, Ferrando F, Patrone F, Sacchetti C (1991) Tumor cell lysis by activated human neutrophils: analysis of neutrophil-delivered oxidative attack and role of leukocyte function-associated antigen 1. Inflammation 15:15–30

    Article  CAS  PubMed  Google Scholar 

  59. Gershkovitz M, Fainsod-Levi T, Zelter T, Sionov RV, Granot Z (2019) TRPM2 modulates neutrophil attraction to murine tumor cells by regulating CXCL2 expression. Cancer Immunol Immunother 68:33–43

    Article  PubMed  Google Scholar 

  60. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H, Granot Z, Casazza A, Mazzone M (2015) MET is required for the recruitment of anti-tumoural neutrophils. Nature 522:349–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Powell DR, Huttenlocher A (2016) Neutrophils in the tumor microenvironment. Trends Immunol 37:41–52

    Article  CAS  PubMed  Google Scholar 

  62. Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA (2000) The neutrophil as a cellular source of chemokines. Immunol Rev 177:195–203

    Article  CAS  PubMed  Google Scholar 

  63. Tecchio C, Scapini P, Pizzolo G, Cassatella MA (2013) On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 23:159–170

    Article  CAS  PubMed  Google Scholar 

  64. Zhang F, Wang H, Wang X, Jiang G, Liu H, Zhang G, Wang H, Fang R, Bu X, Cai S, Du J (2016) TGF-beta induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7:52294–52306

    PubMed  PubMed Central  Google Scholar 

  65. Shrivastava R, Asif M, Singh V, Dubey P, Ahmad Malik S, Lone MU, Tewari BN, Baghel KS, Pal S, Nagar GK, Chattopadhyay N, Bhadauria S (2019) M2 polarization of macrophages by Oncostatin M in hypoxic tumor microenvironment is mediated by mTORC2 and promotes tumor growth and metastasis. Cytokine 118:130–143

    Article  CAS  PubMed  Google Scholar 

  66. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, Verstegen NJM, Ciampricotti M, Hawinkels L, Jonkers J, de Visser KE (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65:8896–8904

    Article  CAS  PubMed  Google Scholar 

  68. Pang Y, Gara SK, Achyut BR, Li Z, Yan HH, Day CP, Weiss JM, Trinchieri G, Morris JC, Yang L (2013) TGF-beta signaling in myeloid cells is required for tumor metastasis. Cancer Discov 3:936–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Elaskalani O, Razak NB, Falasca M, Metharom P (2017) Epithelial-mesenchymal transition as a therapeutic target for overcoming chemoresistance in pancreatic cancer. World J Gastrointest Oncol 9:37–41

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dumitru CA, Fechner MK, Hoffmann TK, Lang S, Brandau S (2012) A novel p38-MAPK signaling axis modulates neutrophil biology in head and neck cancer. J Leukoc Biol 91:591–598

    Article  CAS  PubMed  Google Scholar 

  71. Galdiero MR, Varricchi G, Loffredo S, Bellevicine C, Lansione T, Ferrara AL, Iannone R, di Somma S, Borriello F, Clery E, Triassi M, Troncone G, Marone G (2018) Potential involvement of neutrophils in human thyroid cancer. PLoS One 13:e0199740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Tsuda Y, Fukui H, Asai A, Fukunishi S, Miyaji K, Fujiwara S, Teramura K, Fukuda A, Higuchi K (2012) An immunosuppressive subtype of neutrophils identified in patients with hepatocellular carcinoma. J Clin Biochem Nutr 51:204–212

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z, Fridlender ZG (2014) Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17—a new mechanism of impaired antitumor immunity. Int J Cancer 135:1178–1186

    Article  CAS  PubMed  Google Scholar 

  74. Yan HH, Jiang J, Pang Y, Achyut BR, Lizardo M, Liang X, Hunter K, Khanna C, Hollander C, Yang L (2015) CCL9 induced by TGFbeta signaling in myeloid cells enhances tumor cell survival in the premetastatic organ. Cancer Res 75:5283–5298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Eash KJ, Greenbaum AM, Gopalan PK, Link DC (2010) CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest 120:2423–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li TJ, Jiang YM, Hu YF, Huang L, Yu J, Zhao LY, Deng HJ, Mou TY, Liu H, Yang Y, Zhang Q, Li GX (2017) Interleukin-17-producing neutrophils Link inflammatory stimuli to disease progression by promoting angiogenesis in gastric cancer. Clin Cancer Res 23:1575–1585

    Article  CAS  PubMed  Google Scholar 

  77. Zhang H, Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9:1773–1781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. de Oliveira S, Reyes-Aldasoro CC, Candel S, Renshaw SA, Mulero V, Calado A (2013) Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol 190:4349–4359

    Article  PubMed  CAS  Google Scholar 

  79. Sokol CL, Luster AD (2015) The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 7:a016303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Akgul C, Moulding DA, Edwards SW (2001) Molecular control of neutrophil apoptosis. FEBS Lett 487:318–322

    Article  CAS  PubMed  Google Scholar 

  81. Novitskiy SV, Pickup MW, Gorska AE, Owens P, Chytil A, Aakre M, Wu H, Shyr Y, Moses HL (2011) TGF-beta receptor II loss promotes mammary carcinoma progression by Th17 dependent mechanisms. Cancer Discov 1:430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bodogai M, Moritoh K, Lee-Chang C, Hollander CM, Sherman-Baust CA, Wersto RP, Araki Y, Miyoshi I, Yang L, Trinchieri G, Biragyn A (2015) Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res 75:3456–3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bottoni U, Trapasso F (2009) The role of G-CSF in the treatment of advanced tumors. Cancer Biol Ther 8:1744–1746

    Article  CAS  PubMed  Google Scholar 

  84. Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA, Zhavoronkov A (2014) A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med 3:737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dorsam B, Bosl T, Reiners KS, Barnert S, Schubert R, Shatnyeva O, Zigrino P, Engert A, Hansen HP, von Strandmann EP (2018) Hodgkin lymphoma-derived extracellular vesicles change the secretome of fibroblasts toward a CAF phenotype. Front Immunol 9:1358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Metcalf D (1989) The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27–30

    Article  CAS  PubMed  Google Scholar 

  87. Alves JJP, De Medeiros Fernandes TAA, De Araujo JMG, Cobucci RNO, Lanza DCF, Bezerra FL, Andrade VS, Fernandes JV (2018) Th17 response in patients with cervical cancer. Oncol Lett 16:6215–6227

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV (2016) IL17 producing gammadeltaT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer 139:869–881

    Article  PubMed  CAS  Google Scholar 

  89. Borregaard N, Cowland JB (1997) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89:3503–3521

    Article  CAS  PubMed  Google Scholar 

  90. Felix K, Gaida MM (2016) Neutrophil-derived proteases in the microenvironment of pancreatic cancer—active players in tumor progression. Int J Biol Sci 12:302–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okada Y (2017) In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O’Dell JR (eds) Kelley and Firestein’s textbook of rheumatology, 10th edn. Elsevier, Philadelphia

    Google Scholar 

  92. DiCamillo SJ, Yang S, Panchenko MV, Toselli PA, Naggar EF, Rich CB, Stone PJ, Nugent MA, Panchenko MP (2006) Neutrophil elastase-initiated EGFR/MEK/ERK signaling counteracts stabilizing effect of autocrine TGF-beta on tropoelastin mRNA in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 291:L232–L243

    Article  CAS  PubMed  Google Scholar 

  93. Yang R, Zhong L, Yang XQ, Jiang KL, Li L, Song H, Liu BZ (2016) Neutrophil elastase enhances the proliferation and decreases apoptosis of leukemia cells via activation of PI3K/Akt signaling. Mol Med Rep 13:4175–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lerman I, Hammes SR (2018) Neutrophil elastase in the tumor microenvironment. Steroids 133:96–101

    Article  CAS  PubMed  Google Scholar 

  95. Lerman I, Garcia-Hernandez ML, Rangel-Moreno J, Chiriboga L, Pan C, Nastiuk KL, Krolewski JJ, Sen A, Hammes SR (2017) Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase. Mol Cancer Res 15:1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M (2003) Elevated expression of polymorphonuclear leukocyte elastase in breast cancer tissue is associated with tamoxifen failure in patients with advanced disease. Br J Cancer 88:1084–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wada Y, Yoshida K, Hihara J, Konishi K, Tanabe K, Ukon K, Taomoto J, Suzuki T, Mizuiri H (2006) Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha. Cancer Sci 97:1037–1043

    Article  CAS  PubMed  Google Scholar 

  98. Caruso JA, Hunt KK, Keyomarsi K (2010) The neutrophil elastase inhibitor elafin triggers rb-mediated growth arrest and caspase-dependent apoptosis in breast cancer. Cancer Res 70:7125–7136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kerros C, Tripathi SC, Zha D, Mehrens JM, Sergeeva A, Philips AV, Qiao N, Peters HL, Katayama H, Sukhumalchandra P, Ruisaard KE, Perakis AA, St John LS, Lu S, Mittendorf EA, Clise-Dwyer K, Herrmann AC, Alatrash G, Toniatti C, Hanash SM, Ma Q, Molldrem JJ (2017) Neuropilin-1 mediates neutrophil elastase uptake and cross-presentation in breast cancer cells. J Biol Chem 292:10295–10305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yui S, Osawa Y, Ichisugi T, Morimoto-Kamata R (2014) Neutrophil cathepsin G, but not elastase, induces aggregation of MCF-7 mammary carcinoma cells by a protease activity-dependent cell-oriented mechanism. Mediat Inflamm 2014:971409

    Article  CAS  Google Scholar 

  101. Morimoto-Kamata R, Yui S (2017) Insulin-like growth factor-1 signaling is responsible for cathepsin G-induced aggregation of breast cancer MCF-7 cells. Cancer Sci 108:1574–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Akizuki M, Fukutomi T, Takasugi M, Takahashi S, Sato T, Harao M, Mizumoto T, Yamashita J (2007) Prognostic significance of immunoreactive neutrophil elastase in human breast cancer: long-term follow-up results in 313 patients. Neoplasia 9:260–264

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ho AS, Chen CH, Cheng CC, Wang CC, Lin HC, Luo TY, Lien GS, Chang J (2014) Neutrophil elastase as a diagnostic marker and therapeutic target in colorectal cancers. Oncotarget 5:473–480

    PubMed  PubMed Central  Google Scholar 

  104. Wilson TJ, Nannuru KC, Futakuchi M, Sadanandam A, Singh RK (2008) Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res 68:5803–5811

    Article  CAS  PubMed  Google Scholar 

  105. Chakrabarti S, Zee JM, Patel KD (2006) Regulation of matrix metalloproteinase-9 (MMP-9) in TNF-stimulated neutrophils: novel pathways for tertiary granule release. J Leukoc Biol 79:214–222

    Article  CAS  PubMed  Google Scholar 

  106. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  CAS  PubMed  Google Scholar 

  107. Pal-Ghosh S, Blanco T, Tadvalkar G, Pajoohesh-Ganji A, Parthasarathy A, Zieske JD, Stepp MA (2011) MMP9 cleavage of the beta4 integrin ectodomain leads to recurrent epithelial erosions in mice. J Cell Sci 124:2666–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lin M, Jackson P, Tester AM, Diaconu E, Overall CM, Blalock JE, Pearlman E (2008) Matrix metalloproteinase-8 facilitates neutrophil migration through the corneal stromal matrix by collagen degradation and production of the chemotactic peptide Pro-Gly-Pro. Am J Pathol 173:144–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gordon GM, Ledee DR, Feuer WJ, Fini ME (2009) Cytokines and signaling pathways regulating matrix metalloproteinase-9 (MMP-9) expression in corneal epithelial cells. J Cell Physiol 221:402–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A (2007) Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci 48:4360–4367

    Article  PubMed  Google Scholar 

  111. Finke J, Ko J, Rini B, Rayman P, Ireland J, Cohen P (2011) MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy. Int Immunopharmacol 11:856–861

    Article  CAS  PubMed  Google Scholar 

  112. Li H, Qiu Z, Li F, Wang C (2017) The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 14:5865–5870

    PubMed  PubMed Central  Google Scholar 

  113. Yousef EM, Tahir MR, St-Pierre Y, Gaboury LA (2014) MMP-9 expression varies according to molecular subtypes of breast cancer. BMC Cancer 14:609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES (2014) Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 5:2736–2749

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM (2004) Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin Cancer Res 10:7621–7628

    Article  CAS  PubMed  Google Scholar 

  116. Gutierrez-Fernandez A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL, Jones JL, Span PN, Sweep FC, Puente XS, Lopez-Otin C (2008) Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res 68:2755–2763

    Article  CAS  PubMed  Google Scholar 

  117. Thirkettle S, Decock J, Arnold H, Pennington CJ, Jaworski DM, Edwards DR (2013) Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem 288:16282–16294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bockelman C, Beilmann-Lehtonen I, Kaprio T, Koskensalo S, Tervahartiala T, Mustonen H, Stenman UH, Sorsa T, Haglund C (2018) Serum MMP-8 and TIMP-1 predict prognosis in colorectal cancer. BMC Cancer 18:679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535

    Article  CAS  PubMed  Google Scholar 

  120. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Erpenbeck L, Schon MP (2017) Neutrophil extracellular traps: protagonists of cancer progression? Oncogene 36:2483–2490

    Article  CAS  PubMed  Google Scholar 

  122. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, Bowden MG, Hussain M, Zhang K, Kubes P (2010) A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol 185:7413–7425

    Article  CAS  PubMed  Google Scholar 

  123. Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU (2009) Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ 16:1438–1444

    Article  CAS  PubMed  Google Scholar 

  124. van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O’Doherty RM, Minervini MI, Huang H, Simmons RL, Tsung A (2018) Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 68:1347–1360

    Article  PubMed  CAS  Google Scholar 

  125. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H, Tsung A (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76:1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Oklu R, Sheth RA, Wong KHK, Jahromi AH, Albadawi H (2017) Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagn Ther 7:S140–S1S9

    Article  PubMed  PubMed Central  Google Scholar 

  127. Richardson JJR, Hendrickse C, Gao-Smith F, Thickett DR (2017) Neutrophil extracellular trap production in patients with colorectal cancer in vitro. Int J Inflam 2017:4915062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Berger-Achituv S, Brinkmann V, Abed UA, Kuhn LI, Ben-Ezra J, Elhasid R, Zychlinsky A (2013) A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol 4:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Sangaletti S, Tripodo C, Vitali C, Portararo P, Guarnotta C, Casalini P, Cappetti B, Miotti S, Pinciroli P, Fuligni F, Fais F, Piccaluga PP, Colombo MP (2014) Defective stromal remodeling and neutrophil extracellular traps in lymphoid tissues favor the transition from autoimmunity to lymphoma. Cancer Discov 4:110–129

    Article  CAS  PubMed  Google Scholar 

  130. Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252

    Article  CAS  PubMed  Google Scholar 

  131. Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284

    Article  CAS  PubMed  Google Scholar 

  132. Comen EA (2012) Tracking the seed and tending the soil: evolving concepts in metastatic breast cancer. Discov Med 14:97–104

    PubMed  Google Scholar 

  133. Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vanharanta S, Massague J (2013) Origins of metastatic traits. Cancer Cell 24:410–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, Ferri LE (2012) Neutrophils promote liver metastasis via Mac-1-mediated interactions with circulating tumor cells. Cancer Res 72:3919–3927

    Article  CAS  PubMed  Google Scholar 

  136. Leach J, Morton JP, Sansom OJ (2019) Neutrophils: homing in on the myeloid mechanisms of metastasis. Mol Immunol 110:69–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Benson DD, Meng X, Fullerton DA, Moore EE, Lee JH, Ao L, Silliman CC, Barnett CC Jr (2012) Activation state of stromal inflammatory cells in murine metastatic pancreatic adenocarcinoma. Am J Physiol Regul Integr Comp Physiol 302:R1067–R1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dumitru CA, Lang S, Brandau S (2013) Modulation of neutrophil granulocytes in the tumor microenvironment: mechanisms and consequences for tumor progression. Semin Cancer Biol 23:141–148

    Article  CAS  PubMed  Google Scholar 

  139. Deryugina EI, Zajac E, Juncker-Jensen A, Kupriyanova TA, Welter L, Quigley JP (2014) Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia 16:771–788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ardi VC, Kupriyanova TA, Deryugina EI, Quigley JP (2007) Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A 104:20262–20267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nozawa H, Chiu C, Hanahan D (2006) Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci U S A 103:12493–12498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, Wang Y, Shi YF (2017) TNFalpha-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2(+) neutrophils. Oncogene 36:482–490

    Article  CAS  PubMed  Google Scholar 

  143. De Larco JE, Wuertz BR, Furcht LT (2004) The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clin Cancer Res 10:4895–4900

    Article  PubMed  Google Scholar 

  144. Hu P, Shen M, Zhang P, Zheng C, Pang Z, Zhu L, Du J (2015) Intratumoral neutrophil granulocytes contribute to epithelial-mesenchymal transition in lung adenocarcinoma cells. Tumour Biol 36:7789–7796

    Article  CAS  PubMed  Google Scholar 

  145. Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol 225:438–447

    Article  CAS  PubMed  Google Scholar 

  146. Zhang J, Qiao X, Shi H, Han X, Liu W, Tian X, Zeng X (2016) Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation. Tumour Biol 37:5397–5404

    Article  CAS  PubMed  Google Scholar 

  147. Choi JW, Kim JK, Yang YJ, Kim P, Yoon KH, Yun SH (2015) Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Cancer Res 75:4474–4482

    Article  CAS  PubMed  Google Scholar 

  148. Fabisiewicz A, Grzybowska E (2017) CTC clusters in cancer progression and metastasis. Med Oncol 34:12

    Article  PubMed  CAS  Google Scholar 

  149. Morimoto-Kamata R, Mizoguchi S, Ichisugi T, Yui S (2012) Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediat Inflamm 2012:456462

    Article  CAS  Google Scholar 

  150. Jadhav S, Bochner BS, Konstantopoulos K (2001) Hydrodynamic shear regulates the kinetics and receptor specificity of polymorphonuclear leukocyte-colon carcinoma cell adhesive interactions. J Immunol 167:5986–5993

    Article  CAS  PubMed  Google Scholar 

  151. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, Chen MB, Krall JA, DeCock J, Zervantonakis IK, Iannello A, Iwamoto Y, Cortez-Retamozo V, Kamm RD, Pittet MJ, Raulet DH, Weinberg RA (2016) Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 6:630–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE (2009) Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 125:1298–1305

    Article  CAS  PubMed  Google Scholar 

  153. Reticker-Flynn NE, Bhatia SN (2015) Aberrant glycosylation promotes lung cancer metastasis through adhesion to galectins in the metastatic niche. Cancer Discov 5:168–181

    Article  CAS  PubMed  Google Scholar 

  154. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. https://doi.org/10.1172/JCI67484

    Article  CAS  PubMed Central  Google Scholar 

  155. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, Schott AF, Kinugasa-Katayama Y, Lee Y, Won NH, Nakasone ES, Hearn SA, Kuttner V, Qiu J, Almeida AS, Perurena N, Kessenbrock K, Goldberg MS, Egeblad M (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8:361ra138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Najmeh S, Cools-Lartigue J, Rayes RF, Gowing S, Vourtzoumis P, Bourdeau F, Giannias B, Berube J, Rousseau S, Ferri LE, Spicer JD (2017) Neutrophil extracellular traps sequester circulating tumor cells via beta1-integrin mediated interactions. Int J Cancer 140:2321–2330

    Article  CAS  PubMed  Google Scholar 

  157. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, Manova-Todorova K, Leversha M, Hogg N, Seshan VE, Norton L, Brogi E, Massague J (2012) A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 150:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, Eberlein C, Candido JB, Clarke M, Nixon C, Connelly J, Jamieson N, Carter CR, Balkwill F, Chang DK, Evans TRJ, Strathdee D, Biankin AV, Nibbs RJB, Barry ST, Sansom OJ, Morton JP (2016) CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29:832–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang D, Sun H, Wei J, Cen B, DuBois RN (2017) CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res 77:3655–3665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Seubert B, Grunwald B, Kobuch J, Cui H, Schelter F, Schaten S, Siveke JT, Lim NH, Nagase H, Simonavicius N, Heikenwalder M, Reinheckel T, Sleeman JP, Janssen KP, Knolle PA, Kruger A (2015) Tissue inhibitor of metalloproteinases (TIMP)-1 creates a premetastatic niche in the liver through SDF-1/CXCR4-dependent neutrophil recruitment in mice. Hepatology 61:238–248

    Article  CAS  PubMed  Google Scholar 

  161. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB, Land SR, Marconcini LA, Kliment CR, Jenkins KM, Beaulieu KA, Mouded M, Frank SJ, Wong KK, Shapiro SD (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16:219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lim SY, Gordon-Weeks A, Allen D, Kersemans V, Beech J, Smart S, Muschel RJ (2015) Cd11b(+) myeloid cells support hepatic metastasis through down-regulation of angiopoietin-like 7 in cancer cells. Hepatology 62:521–533

    Article  CAS  PubMed  Google Scholar 

  163. Gordon-Weeks AN, Lim SY, Yuzhalin AE, Jones K, Markelc B, Kim KJ, Buzzelli JN, Fokas E, Cao Y, Smart S, Muschel R (2017) Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice. Hepatology 65:1920–1935

    Article  CAS  PubMed  Google Scholar 

  164. Ham B, Wang N, D’Costa Z, Fernandez MC, Bourdeau F, Auguste P, Illemann M, Eefsen RL, Hoyer-Hansen G, Vainer B, Evrard M, Gao ZH, Brodt P (2015) TNF receptor-2 facilitates an immunosuppressive microenvironment in the liver to promote the colonization and growth of hepatic metastases. Cancer Res 75:5235–5247

    Article  CAS  PubMed  Google Scholar 

  165. Lorente D, Mateo J, Templeton AJ, Zafeiriou Z, Bianchini D, Ferraldeschi R, Bahl A, Shen L, Su Z, Sartor O, de Bono JS (2015) Baseline neutrophil-lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use. Ann Oncol 26:750–755

    Article  CAS  PubMed  Google Scholar 

  166. Gonda K, Shibata M, Sato Y, Washio M, Takeshita H, Shigeta H, Ogura M, Oka S, Sakuramoto S (2017) Elevated neutrophil-to-lymphocyte ratio is associated with nutritional impairment, immune suppression, resistance to S-1 plus cisplatin, and poor prognosis in patients with stage IV gastric cancer. Mol Clin Oncol 7:1073–1078

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Suzuki R, Takagi T, Hikichi T, Konno N, Sugimoto M, Watanabe KO, Nakamura J, Waragai Y, Kikuchi H, Takasumi M, Watanabe H, Ohira H (2016) Derived neutrophil/lymphocyte ratio predicts gemcitabine therapy outcome in unresectable pancreatic cancer. Oncol Lett 11:3441–3445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mimica X, Acevedo F, Oddo D, Ibanez C, Medina L, Kalergis A, Camus M, Sanchez C (2016) Neutrophil/lymphocyte ratio in complete blood count as a mortality predictor in breast cancer. Rev Med Chil 144:691–696

    Article  PubMed  Google Scholar 

  169. Doi H, Nakamatsu K, Anami S, Fukuda K, Inada M, Tatebe H, Ishikawa K, Kanamori S, Monzen H, Nishimura Y (2019) Neutrophil-to-lymphocyte ratio predicts survival after whole-brain radiotherapy in non-small cell lung cancer. In Vivo 33:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhao L, Li T, Yang Y, Zhang Y, Li W, Han L, Shang Y, Lin H, Ren X, Gao Q (2019) Clinical value of neutrophil-to-lymphocyte ratio as a predictor of prognosis of RetroNectin((R))-activated cytokine-induced killer cell therapy in advanced non-small-cell lung cancer. Immunotherapy 11:273–282

    Article  CAS  PubMed  Google Scholar 

  171. Quigley JP, Deryugina EI (2012) Combating angiogenesis early: potential of targeting tumor-recruited neutrophils in cancer therapy. Future Oncol 8:5–8

    Article  PubMed  Google Scholar 

  172. Gargiulo P, Dietrich D, Herrmann R, Bodoky G, Ruhstaller T, Scheithauer W, Glimelius B, Berardi S, Pignata S, Brauchli P (2019) Predicting mortality and adverse events in patients with advanced pancreatic cancer treated with palliative gemcitabine-based chemotherapy in a multicentre phase III randomized clinical trial: the APC-SAKK risk scores. Ther Adv Med Oncol 11:1758835918818351

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gurluler E, Tumay LV, Guner OS, Kucukmetin NT, Hizli B, Zorluoglu A (2014) Oncostatin-M as a novel biomarker in colon cancer patients and its association with clinicopathologic variables. Eur Rev Med Pharmacol Sci 18:2042–2047

    CAS  PubMed  Google Scholar 

  174. De Soyza A, Pavord I, Elborn JS, Smith D, Wray H, Puu M, Larsson B, Stockley R (2015) A randomised, placebo-controlled study of the CXCR2 antagonist AZD5069 in bronchiectasis. Eur Respir J 46:1021–1032

    Article  PubMed  CAS  Google Scholar 

  175. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E, Martinez FO, Di Bitondo R, Troiani G, Sabbatini V, D’Anniballe G, Anacardio R, Cutrin JC, Cavalieri B, Mainiero F, Strippoli R, Villa P, Di Girolamo M, Martin F, Gentile M, Santoni A, Corda D, Poli G, Mantovani A, Ghezzi P, Colotta F (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A 101:11791–11796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Suda K, Kitagawa Y, Ozawa S, Miyasho T, Okamoto M, Saikawa Y, Ueda M, Yamada S, Tasaka S, Funakoshi Y, Hashimoto S, Yokota H, Maruyama I, Ishizaka A, Kitajima M (2007) Neutrophil elastase inhibitor improves postoperative clinical courses after thoracic esophagectomy. Dis Esophagus 20:478–486

    Article  CAS  PubMed  Google Scholar 

  178. Hawes MC, Wen F, Elquza E (2015) Extracellular DNA: a bridge to cancer. Cancer Res 75:4260–4264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants R01CA228524 and Cancer Center Support Grant (P30CA036727) from the National Cancer Institute, National Institutes of Health. Lingyun Wu, as a graduate student, was supported by a scholarship from the Chinese Scholarship Council and a predoctoral fellowship from the University of Nebraska Medical Center. We thank Ms. Alea Hall, UNMC writing center consultant, for the assistance in editing the manuscript.

Conflict of Interest: The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, L., Saxena, S., Singh, R.K. (2020). Neutrophils in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1224. Springer, Cham. https://doi.org/10.1007/978-3-030-35723-8_1

Download citation

Publish with us

Policies and ethics