Skip to main content

Data-Driven Approximations of Dynamical Systems Operators for Control

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

The Koopman and Perron Frobenius transport operators are fundamentally changing how we approach dynamical systems, providing linear representations for even strongly nonlinear dynamics. Although there is tremendous potential benefit of such a linear representation for estimation and control, transport operators are infinite dimensional, making them difficult to work with numerically. Obtaining low-dimensional matrix approximations of these operators is paramount for applications, and the dynamic mode decomposition has quickly become a standard numerical algorithm to approximate the Koopman operator. Related methods have seen rapid development, due to a combination of an increasing abundance of data and the extensibility of DMD based on its simple framing in terms of linear algebra. In this chapter, we review key innovations in the data-driven characterization of transport operators for control, providing a high-level and unified perspective. We emphasize important recent developments around sparsity and control, and discuss emerging methods in big data and machine learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, I., De La Torre, G., Murphey, T.D.: Model-based control using Koopman operators (Neuroscience and Robotics Lab (NxR Lab)). https://vimeo.com/219458009

  2. Abraham, I., De La Torre, G., Murphey, T.D.: Model-based control using Koopman operators (2017). arXiv preprint arXiv:1709.01568

  3. Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21(1), 243–247 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allgöwer, F., Findeisen, R., Nagy, Z.K.: Nonlinear model predictive control: from theory to application. J. Chin. Inst. Chem. Eng. 35(3), 299–315 (2004)

    Google Scholar 

  5. Alpcan, T., Mehta, P.G., Basar, T., Vaidya, U.: Control of non-equilibrium dynamics in communication networks. In: 2006 45th IEEE Conference on Decision and Control, pp. 5216–5221. IEEE (2006)

    Google Scholar 

  6. Andrade, R.F.S.: Carleman embedding and Lyapunov exponents. J. Math. Phys. 23(12), 2271–2275 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Antown, F., Dragičević, D., Froyland, G.: Optimal linear responses for Markov chains and stochastically perturbed dynamical systems (2018). arXiv preprint arXiv:1801.03234

  8. Arbabi, H., Korda, M., Mezić, I.: A data-driven Koopman model predictive control framework for nonlinear flows (2018). arXiv preprint arXiv:1804.05291

  9. Arbabi, H., Mezić, I.: Ergodic theory, dynamic mode decomposition and computation of spectral properties of the Koopman operator. SIAM J. Appl. Dyn. Syst. 16(4), 2096–2126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  11. Åström, K.J.: Optimal control of Markov processes with incomplete state information. J. Math. Anal. Appl. 10(1), 174–205 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bai, Z., Kaiser, E., Proctor, J.L., Kutz, J.N., Brunton, S.L.: Dynamic mode decomposition for compressive system identification (2017). arXiv preprint arXiv:1710.07737

  13. Bai, Z., Wimalajeewa, T., Berger, Z., Wang, G., Glauser, M., Varshney, P.K.: Low-dimensional approach for reconstruction of airfoil data via compressive sensing. AIAA J. 53(4), 920–933 (2014)

    Article  Google Scholar 

  14. Bellman, R., Kalaba, R.: Selected Papers on Mathematical Trends in Control Theory. Dover, New York (1964)

    MATH  Google Scholar 

  15. Bellman, R., Richardson, J.M.: On some questions arising in the approximate solution of nonlinear differential equations. Q. Appl. Math. 20(4), 333–339 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bellman, R.E.: Dynamic Programming. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

  17. Benosman, M., Mansour, H., Huroyan, V.: Koopman-operator observer-based estimation of pedestrian crowd flows. IFAC-PapersOnLine 50(1), 14028–14033 (2017)

    Article  Google Scholar 

  18. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific, Nashua (2005)

    MATH  Google Scholar 

  19. Bollt, E.M.: Controlling chaos and the inverse Frobenius-Perron problem: global stabilization of arbitrary invariant measures. Int. J. Bifurc. Chaos 10(05), 1033–1050 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bollt, E.M.: Combinatorial control of global dynamics in a chaotic differential equation. Int. J. Bifurc. Chaos 11(08), 2145–2162 (2001)

    Article  Google Scholar 

  21. Bollt, E.M., Santitissadeekorn, N.: Applied and Computational Measurable Dynamics. SIAM, Philadelphia (2013)

    Book  MATH  Google Scholar 

  22. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 104(24), 9943–9948 (2007)

    Article  MATH  Google Scholar 

  23. Brockett, R.: Notes on the control of the Liouville equation. In: Control of partial Differential Equations, pp. 101–129. Springer, Berlin (2012)

    Chapter  Google Scholar 

  24. Brockett, R.W.: Nonlinear systems and differential geometry. Proc. IEEE 64(1), 61–72 (1976)

    Article  MathSciNet  Google Scholar 

  25. Brockett, R.W.: Volterra series and geometric control theory. Automatica 12(2), 167–176 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brockett, R.W.: Optimal control of the Liouville equation. AMS IP Stud. Adv. Math. 39, 23 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Brunton, B.W., Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse sensor placement optimization for classification. AMS IP Stud. Adv. Math. 76(5), 2099–2122 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Brunton, B.W., Johnson, L.A., Ojemann, J.G., Kutz, J.N.: Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J. Neurosci. Methods 258, 1–15 (2016)

    Article  Google Scholar 

  29. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kaiser, E., Kutz, J.N.: Chaos as an intermittently forced linear system. Nat. Commun. 8(19), 1–9 (2017)

    Google Scholar 

  30. Brunton, S.L., Brunton, B.W., Proctor, J.L., Kutz, J.N.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS ONE 11(2), e0150,171 (2016)

    Article  Google Scholar 

  31. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci 113(15), 3932–3937 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Sparse identification of nonlinear dynamics with control (SINDYc). IFAC NOLCOS 49(18), 710–715 (2016)

    Google Scholar 

  33. Brunton, S.L., Proctor, J.L., Tu, J.H., Kutz, J.N.: Compressed sensing and dynamic mode decomposition. J. Comput. Dyn. 2(2), 165–191 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Carleman, T.: Application de la théorie des équations intégrales linéaires aux systèmes d’équations différentielles non linéaires. Acta Mathematica 59(1), 63–87 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chaves, M., Sontag, E.D.: State-estimators for chemical reaction networks of Feinberg-Horn-Jackson zero deficiency type. Eur. J. Control 4(8), 343–359 (2002)

    Article  MATH  Google Scholar 

  37. Clautier, J.R., D’Souza, N., Mracek, C.P.: Nonlinear regulation and nonlinear H\(^{\infty }\) control via the state-dependent Riccati equation technique: Part 1, theory. In: Proceedings of the International Conference on Nonlinear Problems in Aviation and Aerospace, pp. 117–131 (1996)

    Google Scholar 

  38. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen (2012). http://ChaosBook.org

  39. Das, A.K., Huang, B., Vaidya, U.: Data-driven optimal control using Perron-Frobenius operator (2018). arXiv preprint arXiv:1806.03649

  40. Das, A.K., Raghunathan, A.U., Vaidya, U.: Transfer operator-based approach for optimal stabilization of stochastic systems. In: American Control Conference (ACC), 2017, pp. 1759–1764. IEEE (2017)

    Google Scholar 

  41. Daum, F.: Non-particle filters. In: Signal and Data Processing of Small Targets 2006, vol. 6236, p. 623614. International Society for Optics and Photonics (2006)

    Google Scholar 

  42. Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO – Set-oriented numerical methods for dynamical systems. Ergodic Theory. Analysis, and Efficient Simulation of Dynamical Systems, pp. 145–174. Springer, Berlin (2001)

    Google Scholar 

  43. Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36(2), 491–515 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dellnitz, M., Froyland, G., Sertl, S.: On the isolated spectrum of the Perron-Frobenius operator. Nonlinearity 13(4), 1171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Dicle, C., Mansour, H., Tian, D., Benosman, M., Vetro, A.: Robust low rank dynamic mode decomposition for compressed domain crowd and traffic flow analysis. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2016)

    Google Scholar 

  46. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Draeger, A., Engell, S., Ranke, H.: Model predictive control using neural networks. IEEE Control Syst. Mag. 15(5), 61–66 (1995)

    Article  Google Scholar 

  48. Drmac, Z., Gugercin, S.: A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions. SIAM J. Sci. Comput. 38(2), A631–A648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory: A Convex Approach. Texts in Applied Mathematics. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  50. Dutta, P., Bhattacharya, R.: Hypersonic state estimation using the Frobenius-Perron operator. J. Guid., Control., Dyn. 34(2), 325–344 (2011)

    Article  Google Scholar 

  51. Dutta, P., Halder, A., Bhattacharya, R.: Uncertainty quantification for stochastic nonlinear systems using Perron-Frobenius operator and Karhunen-Loève expansion. In: 2012 IEEE International Conference on Control Applications (CCA), pp. 1449–1454. IEEE (2012)

    Google Scholar 

  52. Dutta, P., Halder, A., Bhattacharya, R.: Nonlinear filtering with transfer operator. In: American Control Conference (ACC), 2013, pp. 3069–3074. IEEE (2013)

    Google Scholar 

  53. Dutta, P., Halder, A., Bhattacharya, R.: Nonlinear estimation with Perron-Frobenius operator and Karhunen-Loève expansion. IEEE Trans. Aerosp. Electron. Syst. 51(4), 3210–3225 (2015)

    Article  Google Scholar 

  54. Elamvazhuthi, K., Grover, P.: Optimal transport over nonlinear systems via infinitesimal generators on graphs (2016). arXiv preprint arXiv:1612.01193

  55. Elliott, D.: Bilinear Control Systems: Matrices in Action, vol. 169. Springer Science & Business Media, Berlin (2009)

    Book  MATH  Google Scholar 

  56. Eren, U., Prach, A., Koçer, B.B., Raković, S.V., Kayacan, E., Açıkmeşe, B.: Model predictive control in aerospace systems: Current state and opportunities. J. Guid., Control., Dyn. (2017)

    Google Scholar 

  57. Everson, R., Sirovich, L.: Karhunen-Loève procedure for gappy data. JOSA A 12(8), 1657–1664 (1995)

    Article  Google Scholar 

  58. Fontanini, A.D., Vaidya, U., Ganapathysubramanian, B.: A methodology for optimal placement of sensors in enclosed environments: a dynamical systems approach. Build. Environ. 100, 145–161 (2016)

    Article  Google Scholar 

  59. Forbes, M., Guay, M., Forbes, J.: Control design for first-order processes: shaping the probability density of the process state. J. Process Control 14(4), 399–410 (2004)

    Article  Google Scholar 

  60. Froyland, G., González-Tokman, C., Watson, T.M.: Optimal mixing enhancement by local perturbation. SIAM Rev. 58(3), 494–513 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Froyland, G., Padberg, K.: Almost-invariant sets and invariant manifolds - connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D 238, 1507–1523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Froyland, G., Santitissadeekorn, N.: Optimal mixing enhancement (2016). arXiv preprint arXiv:1610.01651

  63. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice - a survey. Automatica 25(3), 335–348 (1989)

    Article  MATH  Google Scholar 

  64. Gaspard, P.: Chaos, Scattering and Statistical Mechanics, vol. 9. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  65. Gaspard, P., Nicolis, G., Provata, A.: Spectral signature of the pitchfork bifurcation: Liouville equation approach. Phys. Rev. E 51(1), 74–94 (1995). https://doi.org/10.1103/PhysRevE.51.74

    Article  MathSciNet  Google Scholar 

  66. Goswami, D., Paley, D.A.: Global bilinearization and controllability of control-affine nonlinear systems: a Koopman spectral approach. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 6107–6112. IEEE (2017)

    Google Scholar 

  67. Goswami, D., Thackray, E., Paley, D.A.: Constrained Ulam dynamic mode decomposition: approximation of the Perron-Frobenius operator for deterministic and stochastic systems. IEEE Control Syst. Lett. 2(4), 809–814 (2018)

    Article  Google Scholar 

  68. Guo, L., Wang, H.: Generalized discrete-time PI control of output PDFs using square root B-spline expansion. Automatica 41(1), 159–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  69. Halder, A., Bhattacharya, R.: Geodesic density tracking with applications to data driven modeling. In: American Control Conference (ACC), 2014, pp. 616–621. IEEE (2014)

    Google Scholar 

  70. Hanke, S., Peitz, S., Wallscheid, O., Klus, S., Böcker, J., Dellnitz, M.: Koopman operator based finite-set model predictive control for electrical drives (2018). arXiv preprint arXiv:1804.00854

  71. Hemati, M., Yao, H.: Dynamic mode shaping for fluid flow control: New strategies for transient growth suppression. In: 8th AIAA Theoretical Fluid Mechanics Conference, p. 3160 (2017)

    Google Scholar 

  72. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5), 728–740 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  73. Huang, B., Ma, X., Vaidya, U.: Data-driven nonlinear stabilization using Koopman operator (2019). arXiv preprint arXiv:1901.07678

  74. Huang, B., Vaidya, U.: Data-driven approximation of transfer operators: naturally structured dynamic mode decomposition (2017). arXiv preprint arXiv:1709.06203 (2017)

  75. Jovanović, M.R., Schmid, P.J., Nichols, J.W.: Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26(2), 024,103 (2014)

    Article  Google Scholar 

  76. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid., Control., Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  77. Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control (2017). arXiv Preprint arXiv:1707.01146

  78. Kaiser, E., Kutz, J.N., Brunton, S.L.: Discovering conservation laws from data for control. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 6415–6421. IEEE (2018)

    Google Scholar 

  79. Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proc. R. Soc. Lond. A 474(2219), (2018)

    Article  MathSciNet  MATH  Google Scholar 

  80. Kaiser, E., Morzyński, M., Daviller, G., Kutz, J.N., Brunton, B.W., Brunton, S.L.: Sparsity enabled cluster reduced-order models for control. J. Comput. Phys. 352, 388–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  81. Kaiser, E., Noack, B.R., Cordier, L., Spohn, A., Segond, M., Abel, M., Daviller, G., Osth, J., Krajnovic, S., Niven, R.K.: Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754, 365–414 (2014)

    Article  MATH  Google Scholar 

  82. Kaiser, E., Noack, B.R., Spohn, A., Cattafesta, L.N., Morzyński, M.: Cluster-based control of a separating flow over a smoothly contoured ramp. Theor. Comput. Fluid Dyn. 31(5–6), 579–593 (2017)

    Article  Google Scholar 

  83. Kantorovich, L.V.: On the translocation of masses. Dokl. Akad. Nauk. USSR (NS) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  84. Kawahara, Y.: Dynamic mode decomposition with reproducing kernels for Koopman spectral analysis. In: Advances in Neural Information Processing Systems, pp. 911–919 (2016)

    Google Scholar 

  85. Khalil, H.K.: Noninear Systems. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  86. Klus, S., Nüske, F., Koltai, P., Wu, H., Kevrekidis, I., Schütte, C., Noé, F.: Data-driven model reduction and transfer operator approximation (2017). arXiv:1703.10112

  87. Ko, J., Klein, D.J., Fox, D., Haehnel, D.: Gaussian processes and reinforcement learning for identification and control of an autonomous blimp. In: 2007 IEEE International Conference on Robotics and Automation, pp. 742–747. IEEE (2007)

    Google Scholar 

  88. Kocijan, J., Murray-Smith, R., Rasmussen, C.E., Girard, A.: Gaussian process model based predictive control. In: American Control Conference, 2004. Proceedings of the 2004, vol. 3, pp. 2214–2219. IEEE (2004)

    Google Scholar 

  89. Koopman, B.O.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    Article  MATH  Google Scholar 

  90. Koopman, B.O., Neumann, J.V.: Dynamical systems of continuous spectra. Proc. Natl. Acad. Sci. 18(3), 255 (1932)

    Article  MATH  Google Scholar 

  91. Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control (2016). arXiv:1611.03537

  92. Korda, M., Susuki, Y., Mezić, I.: Power grid transient stabilization using Koopman model predictive control (2018). arXiv preprint arXiv:1803.10744

    Article  Google Scholar 

  93. Kowalski, K., Steeb, W.H.: Nonlinear Dynamical Systems and Carleman Linearization. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  94. Kus, M.: Integrals of motion for the Lorenz system. J. Phys. A: Math. Gen. 16(18), L689 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  95. Kwee, I., Schmidhuber, J.: Optimal control using the transport equation: the Liouville machine. Adapt. Behav. 9(2), 105–118 (2001)

    Article  Google Scholar 

  96. Lall, S., Marsden, J.E., Glavaški, S.: A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control.: IFAC-Affil. J. 12(6), 519–535 (2002)

    Google Scholar 

  97. Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Phys. D 242(1), 42–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  98. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, vol. 97. Springer Science & Business Media, Berlin (2013)

    MATH  Google Scholar 

  99. Li, J.S., Khaneja, N.: Ensemble control of Bloch equations. IEEE Trans. Autom. Control 54(3), 528–536 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  100. Li, Q., Dietrich, F., Bollt, E.M., Kevrekidis, I.G.: Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. Chaos 27, 103,111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  101. Ling, E., Ratliff, L., Coogan, S.: Koopman operator approach for instability detection and mitigation in signalized traffic. In: 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1297–1302. IEEE (2018)

    Google Scholar 

  102. Liouville, J.: Note sur la théorie de la variation des constantes arbitraires. Journal de mathématiques pures et appliquées, 342–349 (1838)

    Google Scholar 

  103. Lippmann, R.: An introduction to computing with neural nets. IEEE Assp Mag. 4(2), 4–22 (1987)

    Article  Google Scholar 

  104. Ljung, L.: Approaches to identification of nonlinear systems. In: Proceedings of the 29th Chinese Control Conference, Beijing. IEEE (2010)

    Google Scholar 

  105. Ljung, L.: Perspectives on system identification. Ann. Rev. Control 34(1), 1–12 (2010)

    Article  Google Scholar 

  106. Loiseau, J.C., Noack, B.R., Brunton, S.L.: Sparse reduced-order modelling: sensor-based dynamics to full-state estimation. J. Fluid Mech. 844, 459–490 (2018)

    Article  MATH  Google Scholar 

  107. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics (2017). arXiv preprint arXiv:1712.09707

  108. Maner, B.R., Doyle, F.J., Ogunnaike, B.A., Pearson, R.K.: A nonlinear model predictive control scheme using second order Volterra models. In: American Control Conference, 1994, vol. 3, pp. 3253–3257 (1994)

    Google Scholar 

  109. Manohar, K., Brunton, B.W., Kutz, J.N., Brunton, S.L.: Data-driven sparse sensor placement. IEEE Control Syst. Mag. 38(3), 63–86 (2018)

    Article  Google Scholar 

  110. Manohar, K., Kaiser, E., Brunton, S.L., Kutz, J.N.: Optimized sampling for multiscale dynamics. SIAM Multiscale Model. Simul. 17(1), 117–136 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  111. Manohar, K., Kutz, J.N., Brunton, S.L.: Optimal sensor and actuator placement using balanced model reduction (2018). arXiv preprint arXiv:1812.01574

  112. Mardt, A., Pasquali, L., Wu, H., Noé, F.: Vampnets: Deep learning of molecular kinetics (2017). arXiv preprint arXiv:1710.06012

  113. Mathew, G., Mezić, I.: Metrics for ergodicity and design of ergodic dynamics for multi-agent systems. Phys. D: Nonlinear Phenom. 240(4–5), 432–442 (2011)

    Article  MATH  Google Scholar 

  114. Mauroy, A., Goncalves, J.: Koopman-based lifting techniques for nonlinear systems identification (2017). arXiv preprint arXiv:1709.02003

  115. Mauroy, A., Mezić, I.: A spectral operator-theoretic framework for global stability. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 5234–5239. IEEE (2013)

    Google Scholar 

  116. Mauroy, A., Mezić, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61, 3356–3369 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  117. Mauroy, A., Mezić, I., Moehlis, J.: Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D: Nonlinear Phenom. 261, 19–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  118. Mayne, D.Q.: Model predictive control: recent developments and future promise. Automatica 50(12), 2967–2986 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  119. Mehta, P.G., Vaidya, U., Banaszuk, A.: Markov chains, entropy, and fundamental limitations in nonlinear stabilization. IEEE Trans. Autom. Control 53(3), 784–791 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  120. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  121. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45(1), 357–378 (2013). https://doi.org/10.1146/annurev-fluid-011212-140652

    Article  MathSciNet  MATH  Google Scholar 

  122. Mezić, I.: Spectral operator methods in dynamical systems: Theory and applications. Draft manuscript UCSB (2017)

    Google Scholar 

  123. Mitrophanov, A.Y.: Stability and exponential convergence of continuous-time Markov chains. J. Appl. Probab. 40(4), 970–979 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  124. Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic Markov chains. J. Appl. Probab. 42(4), 1003–1014 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  125. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

    Google Scholar 

  126. Morari, M., Lee, J.H.: Model predictive control: past, present and future. Comput. Chem. Eng. 23(4), 667–682 (1999)

    Article  Google Scholar 

  127. Murray-Smith, R., Johansen, T.: Multiple Model Approaches to Nonlinear Modelling and Control. CRC Press, Boca Raton (1997)

    Google Scholar 

  128. Nakamura-Zimmerer, T., Venturi, D., Gong, Q.: Data-driven computational optimal control for nonlinear systems under uncertainty. In: SIAM Annual Meeting 2018. Portland, Oregon

    Google Scholar 

  129. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin (2013)

    MATH  Google Scholar 

  130. Nicolis, G.: Introduction to Nonlinear Science. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  131. Noé, F., Nuske, F.: A variational approach to modeling slow processes in stochastic dynamical systems. Multiscale Model Simul. 11(2), 635–655 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  132. Ohsumi, K., Ohtsuka, T.: Nonlinear receding horizon control of probability density functions. IFAC Proc. 43(14), 735–740 (2010)

    Article  Google Scholar 

  133. Ohsumi, K., Ohtsuka, T.: Particle model predictive control for probability density functions. IFAC Proc. 44(1), 7993–7998 (2011)

    Article  Google Scholar 

  134. Otto, S.E., Rowley, C.W.: Linearly-recurrent autoencoder networks for learning dynamics (2017). arXiv preprint arXiv:1712.01378

  135. Ovsyannikov, D., Ovsyannikov, A., Vorogushin, M., Svistunov, Y.A., Durkin, A.: Beam dynamics optimization: models, methods and applications. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrometers, Detect. Assoc. Equip. 558(1), 11–19 (2006)

    Article  Google Scholar 

  136. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena, CA (2000)

    Google Scholar 

  137. Pearson, J.D.: Approximation methods in optimal control i. Sub-optimal control. I. J. Electron. 13(5), 453–469 (1962)

    Google Scholar 

  138. Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of PDEs (2017). arXiv preprint arXiv:1710.06759

  139. Peitz, S., Klus, S.: Feedback control of nonlinear PDEs using data-efficient reduced order models based on the Koopman operator (2018). arXiv preprint arXiv:1806.09898

  140. Phelps, C., Gong, Q., Royset, J.O., Walton, C., Kaminer, I.: Consistent approximation of a nonlinear optimal control problem with uncertain parameters. Automatica 50(12), 2987–2997 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  141. Phelps, C., Royset, J.O., Gong, Q.: Optimal control of uncertain systems using sample average approximations. SIAM J. Control Optim. 54(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  142. Pontryagin, L., Boltyanskii, V., Gamkrelidze, R., Mishchenko, E.: The Mathematical Theory of Optimal Processes. Interscience, Woburn (1962)

    MATH  Google Scholar 

  143. Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc. IEEE 86(11), 2240–2258 (1998)

    Article  Google Scholar 

  144. Proctor, J.L., Brunton, S.L., Brunton, B.W., Kutz, J.N.: Exploiting sparsity and equation-free architectures in complex systems (invited review). Eur. Phys. J. Spec. Top. 223(13), 2665–2684 (2014)

    Article  Google Scholar 

  145. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mode decomposition with control. SIAM J. Appl. Dyn. Sys. 15(1), 142–161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  146. Proctor, J.L., Brunton, S.L., Kutz, J.N.: Generalizing Koopman theory to allow for inputs and control. SIAM J. Appl. Dyn. Syst. 17(1), 909–930 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  147. Propoi, A.: Problems of the optimal control of mixed states. Avtomatika i Telemekhanika 3, 87–98 (1994)

    MathSciNet  Google Scholar 

  148. Raghunathan, A., Vaidya, U.: Optimal stabilization using Lyapunov measures. IEEE Trans. Autom. Control 59(5), 1316–1321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  149. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations (2017). arXiv preprint arXiv:1711.10561

  150. Rajaram, R., Vaidya, U., Fardad, M., Ganapathysubramanian, B.: Stability in the almost everywhere sense: a linear transfer operator approach. J. Math. Anal. Appl. 368(1), 144–156 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  151. Rantzer, A.: A dual to Lyapunov’s stability theorem. Syst. Control. Lett. 42, 161–168 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  152. Reif, K., Gunther, S., Yaz, E., Unbehauen, R.: Stochastic stability of the continuous-time extended Kalman filter. IEE Proc. Control. Theory Appl. 147(1), 45–52 (2000)

    Article  MATH  Google Scholar 

  153. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House (2003)

    Google Scholar 

  154. Ross, I.M., Karpenko, M., Proulx, R.J.: Path constraints in tychastic and unscented optimal control: Theory, application and experimental results. In: American Control Conference (ACC), 2016, pp. 2918–2923. IEEE (2016)

    Google Scholar 

  155. Roy, S., Borzì, A.: Numerical investigation of a class of Liouville control problems. J. Sci. Comput. 73(1), 178–202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  156. Runolfsson, T., Lin, C.: Computation of uncertainty distributions in complex dynamical systems. In: American Control Conference, 2009. ACC’09., pp. 2458–2463. IEEE (2009)

    Google Scholar 

  157. Sahai, T., Mathew, G., Surana, A.: A chaotic dynamical system that paints and samples. IFAC-PapersOnLine 50(1), 10760–10765 (2017)

    Article  Google Scholar 

  158. Scherpen, J.: Balancing for nonlinear systems. Syst. Control. Lett. 21(2), 143–153 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  159. Schmid, P.J.: Application of the dynamic mode decomposition to experimental data. Exper. Fluids 50(4), 1123–1130 (2011)

    Article  Google Scholar 

  160. Schmid, P.J., Li, L., Juniper, M., Pust, O.: Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25(1–4), 249–259 (2011)

    Article  MATH  Google Scholar 

  161. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81–85 (2009)

    Article  Google Scholar 

  162. Sharma, H., Fontanini, A.D., Vaidya, U., Ganapathysubramanian, B.: Transfer operator theoretic framework for monitoring building indoor environment in uncertain operating conditions (2018). arXiv preprint arXiv:1807:04781

  163. Simon, N., Tibshirani, R.: Standardization and the group lasso penalty. Statistica Sinica 22(3), 983 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  164. Sinha, S., Vaidya, U., Rajaram, R.: Optimal placement of actuators and sensors for control of nonequilibrium dynamics. In: 2013 European Control Conference (ECC), July 17–19, 2013, Zrich, Switzerland (2013)

    Google Scholar 

  165. Sinha, S., Vaidya, U., Rajaram, R.: Operator theoretic framework for optimal placement of sensors and actuators for control of nonequilibrium dynamics. J. Math. Anal. Appl. 440(2), 750–772 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  166. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P.Y., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: a unified overview. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  167. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Inc., New Jersey (2005)

    Google Scholar 

  168. Snyder, C., Bengtsson, T., Bickel, P., Anderson, J.: Obstacles to high-dimensional particle filtering. Mon. Weather Rev. 136(12), 4629–4640 (2008)

    Article  Google Scholar 

  169. Sootla, A., Mauroy, A., Ernst, D.: An optimal control formulation of pulse-based control using Koopman operator. Automatica 91, 217–224 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  170. Sootla, A., Mauroy, A., Goncalves, J.: Shaping pulses to control bistable monotone systems using Koopman operator. IFAC-PapersOnLine 49(18), 698–703 (2016)

    Article  Google Scholar 

  171. Stengel, R.F.: Optimal Control and Estimation. Courier Corporation (2012)

    Google Scholar 

  172. Surana, A.: Koopman Operator Based Nonlinear Systems and Control Framework. MoDyL Kickoff, Santa Barbara (2016)

    Google Scholar 

  173. Surana, A.: Koopman operator based observer synthesis for control-affine nonlinear systems. In: 55th IEEE Conference on Decision and Control (CDC), pp. 6492–6499 (2016)

    Google Scholar 

  174. Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman operator framework. IFAC-PapersOnLine 49(18), 716–723 (2016)

    Article  Google Scholar 

  175. Surana, A., Williams, M.O., Morari, M., Banaszuk, A.: Koopman operator framework for constrained state estimation. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 94–101. IEEE (2017)

    Google Scholar 

  176. Susuki, Y., Mezić, I.: A prony approximation of Koopman mode decomposition. IEEE Conference on Decision and Control (CDC), pp. 7022–7027 (2015)

    Google Scholar 

  177. Susuki, Y., Mezić, I., Raak, F., Hikihara, T.: Applied Koopman operator theory for power systems technology. Nonlinear Theory Appl. IEICE 7(4), 430–459 (2016)

    Article  Google Scholar 

  178. Susuki, Y., Sako, K., Hikihara, T.: On the spectral equivalence of Koopman operators through delay embedding (2017). arXiv preprint arXiv:1706.01006

  179. Takeishi, N., Kawahara, Y., Yairi, T.: Learning Koopman invariant subspaces for dynamic mode decomposition. In: Advances in Neural Information Processing Systems, pp. 1130–1140 (2017)

    Google Scholar 

  180. Takens, F.: Detecting strange attractors in turbulence. Lect. Notes Math. 898, 366–381 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  181. Tang, S., Kumar, V.: Autonomous flying. Annu. Rev. Control., Robot., Auton. Syst. 1(6), 1–24 (2018)

    Google Scholar 

  182. Vaidya, U.: Duality in stability theory: Lyapunov function and Lyapunov measure. In: 44th Allerton Conference on Communication, Control and Computing, pp. 185–190 (2006)

    Google Scholar 

  183. Vaidya, U.: Converse theorem for almost everywhere stability using Lyapunov measure. In: American Control Conference, 2007. ACC’07, pp. 4835–4840. IEEE (2007)

    Google Scholar 

  184. Vaidya, U.: Observability Gramian for nonlinear systems. In: 2007 46th IEEE Conference on Decision and Control, pp. 3357–3362. IEEE (2007)

    Google Scholar 

  185. Vaidya, U.: Stochastic stability analysis of discrete-time system using Lyapunov measure. In: American Control Conference (ACC), 2015, pp. 4646–4651. IEEE (2015)

    Google Scholar 

  186. Vaidya, U., Chinde, V.: Computation of the Lyapunov measure for almost everywhere stochastic stability. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC), pp. 7042–7047. IEEE (2015)

    Google Scholar 

  187. Vaidya, U., Ganapathysubramanian, B., Raghunathan, A.: Transfer operator method for control in fluid flows. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, pp. 1806–1811. IEEE (2009)

    Google Scholar 

  188. Vaidya, U., Mehta, P.G.: Lyapunov measure for almost everywhere stability. IEEE Trans. Autom. Control 53(1), 307–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  189. Vaidya, U., Mehta, P.G., Shanbhag, U.V.: Nonlinear stabilization via control Lyapunov measure. IEEE Trans. Autom. Control 55(6), 1314–1328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  190. Vaidya, U., Rajaram, R., Dasgupta, S.: Actuator and sensor placement in linear advection PDE with building system application. J. Math. Anal. Appl. 394(1), 213–224 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  191. Wang, H., Baki, H., Kabore, P.: Control of bounded dynamic stochastic distributions using square root models: an applicability study in papermaking systems. Trans. Inst. Meas. Control. 23(1), 51–68 (2001)

    Article  Google Scholar 

  192. Wang, K., Vaidya, U.: Transfer operator approach for computing domain of attraction. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 5390–5395. IEEE (2010)

    Google Scholar 

  193. Wang, T., Gao, H., Qiu, J.: A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 416–425 (2016)

    Article  MathSciNet  Google Scholar 

  194. Wehmeyer, C., Noé, F.: Time-lagged autoencoders: deep learning of slow collective variables for molecular kinetics. J. Chem. Phys. 148(24), 241,703 (2018)

    Article  Google Scholar 

  195. Williams, M.O., Hemati, M.S., Dawson, S.T.M., Kevrekidis, I.G., Rowley, C.W.: Extending data-driven Koopman analysis to actuated systems. IFAC-PapersOnLine 49(18), 704–709 (2016)

    Article  Google Scholar 

  196. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. (2015)

    Google Scholar 

  197. Yeung, E., Kundu, S., Hodas, N.: Learning deep neural network representations for Koopman operators of nonlinear dynamical systems (2017). arXiv preprint arXiv:1708.06850

  198. Yeung, E., Liu, Z., Hodas, N.O.: A Koopman operator approach for computing and balancing gramians for discrete time nonlinear systems. In: 2018 Annual American Control Conference (ACC), pp. 337–344. IEEE (2018)

    Google Scholar 

  199. Yu, S., Mehta, P.G.: Fundamental performance limitations via entropy estimates with hidden Markov models. In: 2007 46th IEEE Conference on Decision and Control, pp. 3982–3988. IEEE (2007)

    Google Scholar 

  200. Zhang, L., Lam, J.: On H2 model reduction of bilinear systems. Automatica 38(2), 205–216 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  201. Zhu, C., Zhu, W., Yang, Y.: Design of feedback control of a nonlinear stochastic system for targeting a pre-specified stationary probability distribution. Probab. Eng. Mech. 30, 20–26 (2012)

    Article  Google Scholar 

  202. Zwillinger, D.: Handbook of Differential Equations. Academic Press, San Diego (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

EK gratefully acknowledges support by the “Washington Research Foundation Fund for Innovation in Data-Intensive Discovery” and a Data Science Environments project award from the Gordon and Betty Moore Foundation (Award #2013-10-29) and the Alfred P. Sloan Foundation (Award #3835) to the University of Washington eScience Institute, and funding through the Mistletoe Foundation. SLB and JNK acknowledge support from the Defense Advanced Research Projects Agency (DARPA contract PA-18-01-FP-125). SLB acknowledges support from the Army Research Office (W911NF-17-1-0306 and W911NF-17-1-0422). JNK acknowledges support from the Air Force Office of Scientific Research (FA9550-19-1-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eurika Kaiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaiser, E., Kutz, J.N., Brunton, S.L. (2020). Data-Driven Approximations of Dynamical Systems Operators for Control. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_8

Download citation

Publish with us

Policies and ethics