Skip to main content

Koopman Framework for Global Stability Analysis

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

In this chapter, we present a new framework to study global stability of nonlinear systems. The proposed approach is based on the stability properties of the Koopman operator and can be seen as an extension of classic stability analysis of linear systems. In the case of (hyperbolic) equilibria, we show that the existence of specific eigenfunctions of the operator is a necessary and sufficient condition for global stability of the attractor. Moreover, using the realization of the operator in a finite-dimensional basis, we provide a systematic method to compute candidate Lyapunov functions of stable systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A sum-of-squares relaxation for polynomial optimization problem is technically a restriction since the space of possible solutions is smaller. However, this nomenclature became standard and the relaxation should be understood as making the problem tractable.

  2. 2.

    The Laplace average computed along a trajectory of the system is given by

    figure a

    If \(f(\mathbf {x}^*)=0\), \(f^*\) is equal to the eigenfunction \(\phi _{\lambda _1}\) if it is finite. See [15, 19] and Chaps. 1, 11, and 15 for more details.

References

  1. Andersen, E.D., Andersen, K.D.: The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In: High Performance Optimization, pp. 197–232. Springer, Berlin (2000)

    Google Scholar 

  2. Carleman, T.: Application de la thorie des quations integrales lineaires aux systmes d’quations diffrentielles nonlinaires. Acta Math. 59, 63–68 (1932)

    Article  MathSciNet  Google Scholar 

  3. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory, vol. 21. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  4. Eisner, T.: Stability of Operators and Operator Semigroups. Birkhäuser, Basel (2010)

    Book  Google Scholar 

  5. Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, vol. 194. Springer Science & Business Media, Berlin (1999)

    MATH  Google Scholar 

  6. Gaspard, P., Nicolis, G., Provata, A., Tasaki, S.: Spectral signature of the pitchfork bifurcation: Liouville equation approach. Phys. Rev. E 51(1), 74 (1995)

    Article  MathSciNet  Google Scholar 

  7. Guillemin, V., Pollack, A.: Differential Topology, vol. 370. American Mathematical Soc, Providence (2010)

    MATH  Google Scholar 

  8. Johnson, C., Yeung, E.: A class of logistic functions for approximating state-inclusive Koopman operators. arXiv:1712.03132 (2017)

  9. Khalil, H.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  10. Kühner, V.: What can Koopmanism do for attractors in dynamical systems? arXiv:1902.07487 (2019)

  11. Lan, Y., Mezić, I.: Linearization in the large of nonlinear systems and Koopman operator spectrum. Phys. D 242, 42–53 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer, Berlin (1994)

    Book  Google Scholar 

  13. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the IEEE International Symposium on Computer-Aided Control System Design, pp. 284–289, Taipei, Taiwan. http://users.isy.liu.se/johanl/yalmip (2004)

  14. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 55(3), 531–534 (1992)

    Article  MathSciNet  Google Scholar 

  15. Mauroy, A., Mezić, I.: On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics. Chaos 22(3), 033112 (2012)

    Article  MathSciNet  Google Scholar 

  16. Mauroy, A., Mezić, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016)

    Article  MathSciNet  Google Scholar 

  17. Mauroy, A., Mezić, I., Moehlis, J.: Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Phys. D 261, 19–30 (2013)

    Article  MathSciNet  Google Scholar 

  18. Mezić, I.: Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn. 41(1–3), 309–325 (2005)

    Article  MathSciNet  Google Scholar 

  19. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Ann. Rev. Fluid Mech. 45, 357–378 (2013)

    Article  MathSciNet  Google Scholar 

  20. Mezić, I.: On applications of the spectral theory of the Koopman operator in dynamical systems and control theory. In: IEEE Conference on Decision and Control, pp. 7034–7041 (2015)

    Google Scholar 

  21. Papachristodoulou, A., Anderson, J., Valmorbida, G., Prajna, S., Seiler, P., Parrilo, P.: SOSTOOLS version 3.00 sum of squares optimization toolbox for MATLAB. arXiv:1310.4716 (2013)

  22. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  Google Scholar 

  23. Rantzer, A.: A dual to Lyapunov’s stability theorem. Syst. Control Lett. 42(3), 161–168 (2001)

    Article  MathSciNet  Google Scholar 

  24. Sootla, A., Mauroy, A.: Geometric properties of isostables and basins of attraction of monotone systems. IEEE Trans. Autom. Control 62(12), 6183–6194 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Method. Softw. 11–12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  26. Susuki, Y., Mezić, I.: Nonlinear Koopman modes and power system stability assessment without models. IEEE Trans. Power Syst. 29(2), 899–907 (2014)

    Article  Google Scholar 

  27. Vaidya, U., Mehta, P.G.: Lyapunov measure for almost everywhere stability. IEEE Trans. Autom. Control 53(1), 307–323 (2008)

    Article  MathSciNet  Google Scholar 

  28. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, New Jersey (1996)

    MATH  Google Scholar 

Download references

Acknowledgements

Dr. Sootla was supported by the EPSRC grant EP/M002454/1. I. Mezić acknowledges support from ARO-MURI grant W911NF-17-1-0306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Mauroy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mauroy, A., Sootla, A., Mezić, I. (2020). Koopman Framework for Global Stability Analysis. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_2

Download citation

Publish with us

Policies and ethics