Skip to main content

Experimental Applications of the Koopman Operator in Active Learning for Control

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

Experimentation as a setting for learning demands adaptability on the part of the decision-making system. It is typically infeasible for agents to have complete a priori knowledge of an environment, their own dynamics, or the behavior of other agents. In order to achieve autonomy in robotic applications, learning must occur incrementally, and ideally as a function of decision-making by exploiting the underlying control system. Most artificial intelligence techniques are ill suited for experimental settings because they either lack the ability to learn incrementally or do not have information measures with which to guide their learning. This chapter examines the Koopman operator, its application in active learning, and its relationship to alternative learning techniques, such as Gaussian processes and kernel ridge regression. Additionally, examples are provided from a variety of experimental applications of the Koopman operator in active learning settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, I., Murphey, T.D.: Active learning of dynamics for data-driven control using koopman operators. IEEE Trans. Robot. 35(5), 1071–1083 (2019)

    Article  Google Scholar 

  2. Abraham, I., Torre, G., Murphey, T.: Model-based control using Koopman operators. In: Robotics: Science and Systems (2017)

    Google Scholar 

  3. Ansari, A., Murphey, T.D.: Sequential action control: Closed-form optimal control for nonlinear and nonsmooth systems. IEEE Trans. Robot. 32 (2017)

    Article  Google Scholar 

  4. Berrueta, T.A., Pervan, A., Fitzsimons, K., Murphey, T.D.: Dynamical system segmentation for information measures in motion. IEEE Robot. Autom. Lett. 4(1), 169–176 (2019)

    Article  Google Scholar 

  5. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Berlin (2006)

    MATH  Google Scholar 

  6. Brunton, S., Brunton, B., Proctor, J., Kutz, J.: Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE 11(2), 1–19 (2016)

    Article  Google Scholar 

  7. Budišić, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos: Interdiscip. J. Nonlinear Sci. 22(4), 047, 510 (2012)

    Article  MathSciNet  Google Scholar 

  8. Campello, R., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. Advances in Knowledge Discovery and Data Mining, pp. 160–172. Springer, Berlin (2013)

    Chapter  Google Scholar 

  9. Chen, B.W., Abdullah, N.N.B., Park, S., Gu, Y.: Efficient multiple incremental computation for kernel ridge regression with Bayesian uncertainty modeling. Futur. Gener. Comput. Syst. 82, 679–688 (2018)

    Article  Google Scholar 

  10. Chirikjan, G.S.: Stochastic Models, Information Theory, and Lie Groups, vol. 2. Springer, Berlin (2012)

    Google Scholar 

  11. Dias, J., Leitao, J.: A method for computing the information matrix of stationary Gaussian processes. In: 1996 8th European Signal Processing Conference (EUSIPCO 1996), pp. 1–4 (1996)

    Google Scholar 

  12. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)

    Article  MathSciNet  Google Scholar 

  13. Fan, T., Murphey, T.: Online feedback control for input-saturated robotic systems on Lie groups. In: Robotics: Science and Systems (2016)

    Google Scholar 

  14. Gallager, R.: Stochastic Processes: Theory for Applications. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  15. Govindarajan, N., Arbabi, H., van Blargian, L., Matchen, T., Tegling, E., Mezić, I.: An operator-theoretic viewpoint to non-smooth dynamical systems: Koopman analysis of a hybrid pendulum. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6477–6484 (2016)

    Google Scholar 

  16. Hamilton, J.: Time Series Analysis. Princeton University Press, Princeton (1994)

    Google Scholar 

  17. Heersink, B., Warren, M., Hoffmann, H.: Dynamic mode decomposition for interconnected control systems (2017). arxiv:1709.02883

  18. Hemati, M.S., Williams, M.O., Rowley, C.W.: Dynamic mode decomposition for large and streaming datasets. Phys. Fluids 26(11), 111, 701 (2014)

    Article  Google Scholar 

  19. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science, pp. 278–283 (1996)

    Google Scholar 

  20. Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control (2017). arxiv:1707.01146

  21. Kalinowska, A., Fitzsimons, K., Dewald, J.P., Murphey, T.D.: Online user assessment for minimal intervention during task-based robotic assistance. In: Robotics: Science and Systems (2018)

    Google Scholar 

  22. Koopman, B.: Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. 17(5), 315–318 (1931)

    Article  Google Scholar 

  23. Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018)

    Article  MathSciNet  Google Scholar 

  24. Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J., Sohl-Dickstein, J.: Deep neural networks as Gaussian processes (2018). arxiv:1711.00165

  25. Li, Q., Dietrich, F., Bollt, E.M., Kevrekidis, I.G.: Extended dynamic mode decomposition with dictionary learning: a data-driven adaptive spectral decomposition of the Koopman operator. Chaos: Interdiscip. J. Nonlinear Sci. 27(10), 103, 111 (2017)

    Article  MathSciNet  Google Scholar 

  26. Mezić, I.: Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech. 45(1), 357–378 (2013). https://doi.org/10.1146/annurev-fluid-011212-140652

    Article  MathSciNet  MATH  Google Scholar 

  27. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)

    Google Scholar 

  28. Neal, R.M.: Priors for infinite networks. Bayesian Learning for Neural Networks, pp. 29–53. Springer, Berlin (1996)

    Chapter  Google Scholar 

  29. Nguyen-Tuong, D., Peters, J., Seeger, M.: Local Gaussian process regression for real time online model learning and control. In: Proceedings of the 21st International Conference on Neural Information Processing Systems, pp. 1193–1200 (2008)

    Google Scholar 

  30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of PDEs (2017). arXiv:1710.06759

  32. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. The MIT Press, Cambridge (2005)

    Book  Google Scholar 

  33. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  34. Seal, H.L.: Studies in the history of probability and statistics. XV: the historical development of the Gauss linear model. Biometrika 54(1/2), 1–24 (1967)

    Article  MathSciNet  Google Scholar 

  35. Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  36. Srivastava, J., Anderson, D.: A comparison of the determinant, maximum root, and trace optimality criteria. Commun. Stat. 3(10), 933–940 (1974)

    Article  MathSciNet  Google Scholar 

  37. Takeishi, N., Kawahara, Y., Tabei, Y., Yairi, T.: Bayesian dynamic mode decomposition. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, pp. 2814–2821 (2017)

    Google Scholar 

  38. Tu, J., Rowley, C., Luchtenburg, D., Brunton, S., Kutz, J.: On dynamic mode decomposition: theory and applications. J. Comput. Dyn. 1, 391 (2014). https://doi.org/10.3934/jcd.2014.1.391

    Article  MathSciNet  MATH  Google Scholar 

  39. Umlauft, J., Beckers, T., Kimmel, M., Hirche, S.: Feedback linearization using Gaussian processes. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 5249–5255 (2017)

    Google Scholar 

  40. Van Vaerenbergh, S., Fernandez-Bes, J., Elvira, V.: On the relationship between online Gaussian process regression and kernel least mean squares algorithms. In: 2016 IEEE International Workshop on Machine Learning for Signal Processing (2016)

    Google Scholar 

  41. Williams, M., Kevrekidis, I., Rowley, C.: A data-driven approximation of the Koopman operator: extending dynamic mode decomposition. J. Nonlinear Sci. 25, 1307–1346 (2015)

    Article  MathSciNet  Google Scholar 

  42. Williams, M.O., Rowley, C.W., Kevrekidis, I.G.: A kernel-based method for data-driven Koopman spectral analysis. J. Comput. Dyn. 2, 247–265 (2015)

    Article  MathSciNet  Google Scholar 

  43. Yeung, E., Kundu, S., Hodas, N.: Learning deep neural network representations for Koopman operators of nonlinear dynamical systems (2017). arxiv:1708.06850

Download references

Acknowledgements

This work was supported by the National Science Foundation under grant CBET-1637764. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Berrueta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berrueta, T.A., Abraham, I., Murphey, T. (2020). Experimental Applications of the Koopman Operator in Active Learning for Control. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_16

Download citation

Publish with us

Policies and ethics