Skip to main content

Data-Driven Nonlinear Stabilization Using Koopman Operator

  • Chapter
  • First Online:
The Koopman Operator in Systems and Control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 484))

Abstract

We propose the application of Koopman operator theory for the design of stabilizing feedback controller for a nonlinear control system. The proposed approach is data-driven and relies on the use of time-series data generated from the control dynamical system for the lifting of a nonlinear system in the Koopman eigenfunction coordinates. In particular, a finite-dimensional bilinear representation of a control-affine nonlinear dynamical system is constructed in the Koopman eigenfunction coordinates using time-series data. Sample complexity results are used to determine the data required to achieve the desired level of accuracy for the approximate bilinear representation of the nonlinear system in Koopman eigenfunction coordinates. A control Lyapunov function-based approach is proposed for the design of stabilizing feedback controller. A systematic convex optimization-based formulation is proposed for the search of control Lyapunov function. Several numerical examples are presented to demonstrate the application of the proposed data-driven stabilization approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arbabi, H., Korda, M., Mezić, I.: A data-driven Koopman model predictive control framework for nonlinear flows (2018). arXiv preprint arXiv:1804.05291

  2. Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal.: Theory, Methods Appl. 7(11), 1163–1173 (1983)

    Article  MathSciNet  Google Scholar 

  3. Astolfi, A.: Feedback stabilization of nonlinear systems. Encycl. Syst. Control, 437–447 (2015)

    Google Scholar 

  4. Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Google Scholar 

  5. Budisic, M., Mohr, R., Mezić, I.: Applied Koopmanism. Chaos 22(047), 510–532 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Vaidya, U.: Sample complexity of nonlinear stochastic dynamics. In: American Control Conference (2019)

    Google Scholar 

  7. Chow, J.H., Cheung, K.W.: A toolbox for power system dynamics and control engineering education and research. IEEE Trans. Power Syst. 7(4), 1559–1564 (1992). https://doi.org/10.1109/59.207380

    Article  Google Scholar 

  8. Das, A.K., Huang, B., Vaidya, U.: Data-driven optimal control using transfer operators. In: 2018 IEEE Conference on Decision and Control (CDC), pp. 3223–3228. IEEE (2018)

    Google Scholar 

  9. Das, A.K., Raghunathan, A.U., Vaidya, U.: Transfer operator-based approach for optimal stabilization of stochastic systems. In: 2017 American Control Conference (ACC), pp. 1759–1764. IEEE (2017)

    Google Scholar 

  10. Freeman, R.A., Primbs, J.A.: Control Lyapunov functions: New ideas from an old source. In: Proceedings of the 35th IEEE Conference on Decision and Control, 1996, vol. 4, pp. 3926–3931. IEEE (1996)

    Google Scholar 

  11. Hanke, S., Peitz, S., Wallscheid, O., Klus, S., Böcker, J., Dellnitz, M.: Koopman operator based finite-set model predictive control for electrical drives (2018). arXiv preprint arXiv:1804.00854

  12. Henrion, D., Garulli, A. (eds.): Positive Polynomials in Control. Lecture Notes in Control and Information Sciences, vol. 312. Springer, Berlin (2005)

    MATH  Google Scholar 

  13. Huang, B., Ma, X., Vaidya, U.: Feedback stabilization using Koopman operator. In: Proceedings of IEEE Control and Decision Conference, Miami (2018)

    Google Scholar 

  14. Huang, B., Vaidya, U.: Data-driven approximation of transfer operators: naturally structured dynamic mode decomposition. In: 2018 Annual American Control Conference (ACC), pp. 5659–5664. IEEE (2018)

    Google Scholar 

  15. Kaiser, E., Kutz, J.N., Brunton, S.L.: Data-driven discovery of Koopman eigenfunctions for control (2017). arXiv preprint arXiv:1707.01146

  16. Khalil, H.K.: Nonlinear Systems. Prentice Hall, New Jersey (1996)

    Google Scholar 

  17. Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. Automatica 93, 149–160 (2018)

    Article  MathSciNet  Google Scholar 

  18. Korda, M., Susuki, Y., Mezić, I.: Power grid transient stabilization using Koopman model predictive control (2018). arXiv preprint arXiv:1803.10744

    Article  Google Scholar 

  19. Lasota, A., Mackey, M.C.: Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Springer, New York (1994)

    Book  Google Scholar 

  20. Mauroy, A., Mezić, I.: Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control 61(11), 3356–3369 (2016)

    Article  MathSciNet  Google Scholar 

  21. Mezić, I.: Spectral properties of dynamical systems, model reductions and decompositions. Nonlinear Dyn. (2005)

    Google Scholar 

  22. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, Pasadena (2000)

    Google Scholar 

  23. Peitz, S., Klus, S.: Koopman operator-based model reduction for switched-system control of pdes (2017). arXiv preprint arXiv:1710.06759

  24. Primbs, J.A., Nevistić, V., Doyle, J.C.: Nonlinear optimal control: a control Lyapunov function and receding horizon perspective. Asian J. Control 1(1), 14–24 (1999)

    Article  Google Scholar 

  25. Raghunathan, A., Vaidya, U.: Optimal stabilization using Lyapunov measures. IEEE Trans. Autom. Control 59(5), 1316–1321 (2014)

    Article  MathSciNet  Google Scholar 

  26. Rowley, C.W., Mezić, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115–127 (2009)

    Article  MathSciNet  Google Scholar 

  27. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control, vol. 10. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  28. Sauer, P.W., Pai, M.: Power system dynamics and stability. Urbana 51, 61,801 (1997)

    Google Scholar 

  29. Schmid, P.J.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  30. Sontag, E.D.: A ‘universal’ construction of Artstein’s theorem on nonlinear stabilization. Syst. Control. Lett. 13(2), 117–123 (1989)

    Article  MathSciNet  Google Scholar 

  31. Sootla, A., Mauroy, A., Ernst, D.: Optimal control formulation of pulse-based control using Koopman operator. Automatica 91, 217–224 (2018)

    Article  MathSciNet  Google Scholar 

  32. Surana, A.: Koopman operator framework for time series modeling and analysis. J. Nonlinear Sci. 1–34 (2018)

    Google Scholar 

  33. Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman operator framework. In: Proceedings of IFAC Symposium on Nonlinear Control Systems. Monterey, California (2016)

    Article  Google Scholar 

  34. Susuki, Y., Mezić, I.: Nonlinear Koopman modes and coherency identification of coupled swing dynamics. IEEE Trans. Power Syst. 26(4), 1894–1904 (2011)

    Article  Google Scholar 

  35. Vaidya, U., Mehta, P., Shanbhag, U.: Nonlinear stabilization via control Lyapunov measure. IEEE Trans. Autom. Control 55, 1314–1328 (2010)

    Article  MathSciNet  Google Scholar 

  36. Vaidya, U., Mehta, P.G.: Computation of Lyapunov measure for almost everywhere stability. In: Proceedings of IEEE Conference on Decision and Control, pp. 5228–5233. San Diego (2006)

    Google Scholar 

  37. Vaidya, U., Mehta, P.G.: Lyapunov measure for almost everywhere stability. IEEE Trans. Autom. Control 53, 307–323 (2008)

    Article  MathSciNet  Google Scholar 

  38. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition. J. Nonlinear Sci. 25(6), 1307–1346 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh Vaidya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, B., Ma, X., Vaidya, U. (2020). Data-Driven Nonlinear Stabilization Using Koopman Operator. In: Mauroy, A., Mezić, I., Susuki, Y. (eds) The Koopman Operator in Systems and Control. Lecture Notes in Control and Information Sciences, vol 484. Springer, Cham. https://doi.org/10.1007/978-3-030-35713-9_12

Download citation

Publish with us

Policies and ethics