Skip to main content

Part of the book series: Scientific Computation ((SCIENTCOMP))

  • 1368 Accesses

Abstract

Many interesting problems that we would like to treat using computational molecular modeling are unfortunately too large to be considered by quantum mechanics (QM). Quantum mechanics methods consider the electronic structure in a molecular system. Even when some of the electrons are omitted, still a large number of particles must be considered, which makes the calculations time-consuming from computations point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allinger, N.L.: Conformational analysis 130. MM2. a hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99, 8127–8134 (1977)

    Google Scholar 

  • Allinger, N.L., Li, F., Yan, L., Tai, J.C.: Molecular mechanics. the MM3 force field for alkenes. J. Comput. Chem. 11, 848–867 (1990a)

    Google Scholar 

  • Allinger, N.L., Li, F., Yan, L., Tai, J.C.: Molecular mechanics (MM3) calculations on conjugated hydrocarbons. J. Comput. Chem. 11, 868–895 (1990b)

    Article  Google Scholar 

  • Allinger, N.L., Chen, K., Katzenelenbogen, J.A., Wilson, S.R., Anstead, G. M.: Hyperconjugative effects on carbon-carbon bond lengths in molecular mechanics (MM4). J. Comput. Chem. 17, 747–755 (1996a)

    Article  Google Scholar 

  • Allinger, N.L., Chen, K., Lii, J-H.: An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 17, 642–668 (1996b)

    Article  Google Scholar 

  • Anderson, J.A.: An Introduction to Neural Networks. MIT Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  • Bereau, T., DiStasio, R.A. Jr., Tkatchenko, A., von Lilienfeld, O.A.: Non-covalent interactions across organic and biological subsets of chemical space: physics-based potentials parametrized from machine learning. J. Chem. Phys. 148, 241706–241714 (2018)

    Article  ADS  Google Scholar 

  • Camsari, K.Y., Faria, R., Sutton, B.M., Datta, S.: Stochastic p-bits for invertible logic. Phys. Rev. X 7, 031014 (2017)

    Google Scholar 

  • Camsari, K.Y., Sutton, B.M., Datta, S.: P-bits for probabilistic spin logic. Appl. Phys. Rev. 6, 011305 (2019)

    Article  ADS  Google Scholar 

  • Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M. Jr., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  • Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. Amer. Math. Soc., (2010)

    MATH  Google Scholar 

  • Ewald, P.: Die Berechnung optischer und elektrostatischer Gitter potenciale. Annalen der Physik 64, 253–287 (1921)

    Article  ADS  MATH  Google Scholar 

  • Faber, F.A., Christensen, A.S., Huang, B., von Lilienfeld, O.A.: Alchemical and structural distribution based representation for universal quantum machine learning. J. Chem. Phys. 148, 241717–12 (2018)

    Article  ADS  Google Scholar 

  • Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  • Foloppe, N., MacKerell, A.: All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000)

    Google Scholar 

  • Grimme, S.: A general quantum mechanically derived force field (QMDFF) for molecules and condensed phase simulations. J. Chem. Theory Comput. 10(10), 4497–4514 (2014)

    Article  Google Scholar 

  • Hagler, A.T., Lifson, S.: Energy functions for peptides and proteins. II. Amide hydrogen bond and calculation of amide crystal properties. J. Am. Chem. Soc. 96(17), 5327–5335 (1974)

    Google Scholar 

  • Hagler, A.T., Huler, E., Lifson, S.: Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. J. Am. Chem. Soc. 96(17), 5319–5327 (1974)

    Google Scholar 

  • Hagler, A.T., Lifson, S., Dauber, P.: Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 1. Carboxylic acids, amides, and the C:O⋯H-hydrogen bonds. J. Am. Chem. Soc. 101(18), 5111–5121 (1979a)

    Google Scholar 

  • Hagler, A.T., Lifson, S., Dauber, P.: Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 2. A benchmark for the objective comparison of alternative force fields. J. Am. Chem. Soc. 101(18), 5122–5130 (1979b)

    Google Scholar 

  • Hall, L.H., Kier, L.B.: Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 35, 1039–1045 (1995)

    Article  Google Scholar 

  • Hardy, D.J., Stone, J.E., Vandivort, K.L., Gohara, D., Rodrigues, C., Schulten, K.: Fast molecular electrostatics algorithms on GPUs. In: Wen mei Hwu, W. (ed.) GPU Computing Gems, pp. 43–58. Morgan Kaufmann Publishers, San Francisco (2011)

    Google Scholar 

  • Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2 edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  • Hu, M., Strachan, J.P., Li, Z., Grafals, E.M., Davila, N., Graves, C., Lam, S., Ge, N., Yang, J.J., Williams, R.S.: Dot-product engine for neuromorphic computing: programming 1t1m crossbar to accelerate matrix-vector multiplication. In: Proceedings of the 53rd annual design automation conference, p. 19 (2016)

    Google Scholar 

  • Hünenberger, P.H., van Gunsteren, W.F.: Computer Simulation of Biomolecular Systems, Theoretical and Experimental Applications. Kluwer, Dordrecht (1997)

    Google Scholar 

  • Jorgensen, W.L., Tirado-Rives, J.: The OPLS potential functions for proteins – energy minimizations for crystals of cyclic-peptides and crambin. J. Am. Chem. Soc. 110, 1666–1671 (1988)

    Article  Google Scholar 

  • Leach, A.R.: Molecular Modelling. Principles and Applications, 2nd edn. Pearson Education Limited, Edingburgh Gate/Prentice Hall (2001)

    Google Scholar 

  • Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J., Sohl-Dickstein, J.: Deep neural networks as gaussian processes. In: Conference Proceedings in ICLR, pp. 1–8 (2018)

    Google Scholar 

  • Lifson, S., Warshel, A.: Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 49, 5116–5129 (1968)

    Article  ADS  Google Scholar 

  • London, F.: Zur Theorie und Systematik der Molekularkrafte. Zeitschrift für Physik 63, 245–279 (1930)

    Article  ADS  MATH  Google Scholar 

  • Lubbers, N., Smith, J.S., Barros, K.: Hirarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148, 241715–8 (2018)

    Article  ADS  Google Scholar 

  • Luty, B.A., David, M.E., Tironi, I.G., van Gunsteren., W.F.: A comparison of particle-particle, particle-mesh and Ewald methods for calculating electrostatic interactions in periodic molecular systems. Mol. Simul. 14, 11–20 (1994)

    Google Scholar 

  • Luty, B.A., Tironi, I.G., van Gunsteren, W.F.: Lattice-sum methods for calculating electrostatic interactions in molecular simulations. J. Chem. Phys. 103, 3014–3021 (1995)

    Article  ADS  Google Scholar 

  • MacKerell, A., Banavali, N.: All-atom empirical force field for nucleic acids: II. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 105–120 (2000)

    Google Scholar 

  • MacKerell, A.D. Jr., Feig, M., Brooks III, C.L.: Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 25, 1400–1415 (2004)

    Article  Google Scholar 

  • Mamuye, A.L., Rucco, M., Tesei, L., Merelli, E.: Persistent homology analysis of RNA. Mol. Based Math. Biol. 4, 14–25 (2016)

    Google Scholar 

  • Mehler, E.L.: The Lorentz-Debye-Sack theory and dielectric screening of electrostatic effects in proteins and nucleic acids. In: Murray, J.S., Sen, K. (eds.) Molecular Electrostatic Potential: Concepts and Applications, vol. 3, pp. 371–405. Elsevier Science, Amsterdam (1996)

    Chapter  Google Scholar 

  • Mehler, E.L., Guarnieri, F.: A self-consistent, micro-environment modulated screened Coulomb potential approximation to calculate pH-dependent electrostatic effects in proteins. Biophys. J. 77, 3–22 (1999)

    Article  Google Scholar 

  • Metz, M.P., Piszczatowski, K., Szalewicz, K.: Automatic generation of intermolecular potential energy surfaces. J. Chem. Theory Comput. 12(12), 5895–5919 (2016)

    Article  Google Scholar 

  • Misquitta, A.J., Podeszwa, R., Jeziorski, B., Szalewicz, K.: Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. J. Chem. Phys. 123(21), 214103 (2005)

    Article  ADS  Google Scholar 

  • Mobley, D.L., Bannan, C.C., Rizzi, A., Bayly, C.I., Chodera, J.D., Lim, V.T., Lim, N.M., Beauchamp, K.A., Shirts, M.R., Gilson, M.K., Eastman, P.K.: Open force field consortium: escaping atom types using direct chemical perception with SMIRNOFF. BioRxiv, Mar 21 (2018)

    Google Scholar 

  • Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning, vol. 1. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  • Rogers, D., Hahn, M.: Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010)

    Article  Google Scholar 

  • Rupp, M., Tkatchenko, A., M’́uller, K.R., von Lilienfeld, O.A.: Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012)

    Google Scholar 

  • Täuber, U.C.: Renormalization group: applications in statistical physics. Nucl. Phys. B Proc. Suppl. 00:1–28, (2011)

    Google Scholar 

  • Unke, O.T., Meuwly, M.: A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information. J. Chem. Phys. 148, 241708–15 (2018)

    Article  ADS  Google Scholar 

  • Vandenbrande, S., Waroquier, M., Speybroeck, V.V., Verstraelen, T.: The monomer electron density force field (MEDFF): a physically inspired model for noncovalent interactions. J. Chem. Theory Comput. 13(1), 161–179 (2017)

    Article  Google Scholar 

  • van Gunsteren, W.F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., Geerke, D.P., Glättli, A., Hünenberger, P.H., Kastenholz, M.A., Oostenbrink, C., Schenk, M., Trzesniak, D., van der Vegt, N.F.A., Yu, H.B.: Biomolecular modeling: goals, problems, perspectives. Angew. Chem. Int. Ed. 45(25), 4064–4092 (2006)

    Article  Google Scholar 

  • Van Vleet, M.J., Misquitta, A.J., Stone, A.J., Schmidt, J.: Beyond Borm-Mayer: improved models for short-range repulsion in ab initio force fields. J. Chem. Theory Comput. 12, 3851–3870 (2016)

    Article  Google Scholar 

  • Warshel, A., Lifson, S.: Consistent force field calculations. II. Crystal structures, sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes. J. Chem. Phys. 53, 582 (1970)

    Google Scholar 

  • Weininger, D.: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (1988)

    Google Scholar 

  • Xia, K., Zhao, Z., Wei, G.W.: Multiresolution persistent homology for excessively large biomolecular datasets. J. Chem. Phys. 143, 134103 (2015)

    Article  ADS  Google Scholar 

  • Zeni, C., Rossi, K., Glielmo, A., Fekete, Á., Gaston, N., Baletto, F., De Vita, A.: Building machine learning force fields for nanoclusters. J. Chem. Phys. 148(24), 241739 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kamberaj, H. (2020). Molecular Mechanics. In: Molecular Dynamics Simulations in Statistical Physics: Theory and Applications. Scientific Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-35702-3_7

Download citation

Publish with us

Policies and ethics