Advertisement

B-Human 2019 – Complex Team Play Under Natural Lighting Conditions

  • Thomas RöferEmail author
  • Tim Laue
  • Gerrit Felsch
  • Arne Hasselbring
  • Tim Haß
  • Jan Oppermann
  • Philip Reichenberg
  • Nicole Schrader
Conference paper
  • 176 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

In the RoboCup Standard Platform League 2019, the team B-Human won the main competition and, together with Berlin United - Nao-Team Humboldt, the Mixed Team Competition. For being successful in such a competitive environment, many sophisticated solutions for a variety of robotics tasks need to be found and integrated in a reliable and efficient manner. In this paper, we focus on three aspects that we consider as crucial for this year’s success and that have not been published before: a system of neural networks for ball classification and position estimation, a new framework for behavior specification along with its application to passes and set plays, and a set of approaches for maintaining the reliability of our robot team throughout a game.

References

  1. 1.
    Poppinga, B., Laue, T.: JET-Net: real-time object detection for mobile robots. In: Chalup, S., et al. (eds.) RoboCup 2019: Robot World Cup XXIII. LNAI, pp. 227–240. Springer (2019)Google Scholar
  2. 2.
    RoboCup Technical Committee: RoboCup Standard Platform League (NAO) rule book (2019). https://spl.robocup.org/wp-content/uploads/downloads/Rules2019.pdf
  3. 3.
    Röfer, T., et al.: B-Human team report and code release 2017 (2017). http://www.b-human.de/downloads/publications/2017/coderelease2017.pdf
  4. 4.
    Röfer, T., et al.: B-Human team report and code release 2018 (2018). http://www.b-human.de/downloads/publications/2018/CodeRelease2018.pdf
  5. 5.
    Röfer, T., Laue, T., Richter-Klug, J.: B-Human 2016 – robust approaches for perception and state estimation under more natural conditions. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 503–514. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_42CrossRefGoogle Scholar
  6. 6.
    Röfer, T.: CABSL – C-based agent behavior specification language. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 135–142. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00308-1_11CrossRefGoogle Scholar
  7. 7.
    Thielke, F., Hasselbring, A.: CompiledNN: a JIT compiler for neural network inference (2019). https://github.com/bhuman/CompiledNN
  8. 8.
    Thielke, F., Hasselbring, A.: A JIT compiler for neural network inference. In: Chalup, S., et al. (eds.) RoboCup 2019: Robot World Cup XXIII. LNAI, pp. 448–456. Springer (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Röfer
    • 1
    • 2
    Email author
  • Tim Laue
    • 2
  • Gerrit Felsch
    • 2
  • Arne Hasselbring
    • 2
  • Tim Haß
    • 2
  • Jan Oppermann
    • 2
  • Philip Reichenberg
    • 2
  • Nicole Schrader
    • 2
  1. 1.Deutsches Forschungszentrum für Künstliche Intelligenz, Cyber-Physical SystemsBremenGermany
  2. 2.Universität Bremen, Fachbereich 3 – Mathematik und InformatikBremenGermany

Personalised recommendations