Advertisement

Gliders2d: Source Code Base for RoboCup 2D Soccer Simulation League

  • Mikhail ProkopenkoEmail author
  • Peter Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11531)

Abstract

We describe Gliders2d, a base code release for Gliders, a soccer simulation team which won the RoboCup Soccer 2D Simulation League in 2016. We trace six evolutionary steps, each of which is encapsulated in a sequential change of the released code, from v1.1 to v1.6, starting from agent2d-3.1.1 (set as the baseline v1.0). These changes improve performance by adjusting the agents’ stamina management, their pressing behaviour and the action-selection mechanism, as well as their positional choice in both attack and defense, and enabling riskier passes. The resultant behaviour, which is sufficiently generic to be applicable to physical robot teams, increases the players’ mobility and achieves a better control of the field. The last presented version, Gliders2d-v1.6, approaches the strength of Gliders2013, and outperforms agent2d-3.1.1 by four goals per game on average. The sequential improvements demonstrate how the methodology of human-based evolutionary computation can markedly boost the overall performance with even a small number of controlled steps.

Notes

Acknowledgments

We thank HELIOS team for their excellent code base of agent2d, as well as several members of Gliders team contributing during 2012–2016: David Budden, Oliver Cliff, Victor Jauregui and Oliver Obst. We are also grateful to participants of the discussion on the future of the RoboCup Simulation Leagues, in particular to Peter Stone, Patrick MacAlpine, Nuno Lau, Klaus Dorer, and Daniel Polani.

References

  1. 1.
    Akiyama, H., Nakashima, T.: HELIOS base: an open source package for the RoboCup soccer 2D simulation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 528–535. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_46CrossRefGoogle Scholar
  2. 2.
    Akiyama, H., Noda, I.: Multi-agent positioning mechanism in the dynamic environment. In: Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 377–384. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68847-1_38CrossRefGoogle Scholar
  3. 3.
    Akiyama, H., Shimora, H.: HELIOS 2010 team description. In: Ruiz-del-Solar, J., Chown, E., Plöger, P.G. (eds.) RoboCup 2010: Robot Soccer World Cup XIV. LNCS, vol. 6556. Springer, Heidelberg (2011)Google Scholar
  4. 4.
    Budden, D., Prokopenko, M.: Improved particle filtering for pseudo-uniform belief distributions in robot localisation. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 385–395. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_34CrossRefGoogle Scholar
  5. 5.
    Budden, D.M., Wang, P., Obst, O., Prokopenko, M.: RoboCup simulation leagues: enabling replicable and robust investigation of complex robotic systems. IEEE Robot. Autom. Mag. 22(3), 140–146 (2015)CrossRefGoogle Scholar
  6. 6.
    Burkhard, H.D., Duhaut, D., Fujita, M., Lima, P., Murphy, R., Rojas, R.: The road to RoboCup 2050. IEEE Robot. Autom. Mag. 9(2), 31–38 (2002)CrossRefGoogle Scholar
  7. 7.
    Butler, M., Prokopenko, M., Howard, T.: Flexible synchronisation within RoboCup environment: a comparative analysis. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 119–128. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45324-5_10CrossRefGoogle Scholar
  8. 8.
    Cheng, C.D., Kosorukoff, A.: Interactive one-max problem allows to compare the performance of interactive and human-based genetic algorithms. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3102, pp. 983–993. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24854-5_98CrossRefGoogle Scholar
  9. 9.
    Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cioppa, T.M., Lucas, T.W.: Efficient nearly orthogonal and space-filling latin hypercubes. Technometrics 49(1), 45–55 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cliff, O.M., Lizier, J.T., Wang, X.R., Wang, P., Obst, O., Prokopenko, M.: Towards quantifying interaction networks in a football match. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS (LNAI), vol. 8371, pp. 1–12. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44468-9_1CrossRefGoogle Scholar
  12. 12.
    Cliff, O.M., Lizier, J.T., Wang, X.R., Wang, P., Obst, O., Prokopenko, M.: Quantifying long-range interactions and coherent structure in multi-agent dynamics. Artif. Life 23(1), 34–57 (2017)CrossRefGoogle Scholar
  13. 13.
    Dylla, F., et al.: Approaching a formal soccer theory from the behavior specification in robotic soccer. In: Dabnicki, P., Baca, A. (eds.) Computers in Sport, pp. 161–186. Bioengineering, WIT Press, London (2008)CrossRefGoogle Scholar
  14. 14.
    Gabel, T., Klöppner, P., Godehardt, E., Tharwat, A.: Communication in soccer simulation: on the use of wiretapping opponent teams. In: Holz, D., Genter, K., Saad, M., von Stryk, O. (eds.) RoboCup 2018. LNCS (LNAI), vol. 11374, pp. 3–15. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-27544-0_1CrossRefGoogle Scholar
  15. 15.
    Kok, J.R., Vlassis, N., Groen, F.: UvA Trilearn 2003 team description. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) Proceedings CD RoboCup 2003. Springer, Padua (2003)Google Scholar
  16. 16.
    Kosorukoff, A.: Human based genetic algorithm. In: 2001 IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3464–3469. IEEE (2001)Google Scholar
  17. 17.
    Lizier, J.T., Prokopenko, M., Zomaya, A.Y.: Coherent information structure in complex computation. Theory Biosci. 131, 193–203 (2012)CrossRefGoogle Scholar
  18. 18.
    Nakashima, T., Akiyama, H., Suzuki, Y., Ohori, A., Fukushima, T.: HELIOS 2018: team description paper. In: RoboCup 2018 Symposium and Competitions: Team Description Papers, Montreal, Canada, July 2018 (2018)Google Scholar
  19. 19.
    Nehaniv, C., Polani, D., Olsson, L., Klyubin, A.: Evolutionary information-theoretic foundations of sensory ecology: channels of organism-specific meaningful information. In: Modeling Biology: Structures, Behaviour, Evolution, pp. 9–11 (2005)Google Scholar
  20. 20.
    Noda, I., Stone, P.: The RoboCup soccer server and CMUnited clients: implemented infrastructure for MAS research. Auton. Agents Multi-agent Syst. 7(1–2), 101–120 (2003)CrossRefGoogle Scholar
  21. 21.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Evolving spatiotemporal coordination in a modular robotic system. In: Nolfi, S., et al. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 558–569. Springer, Heidelberg (2006).  https://doi.org/10.1007/11840541_46CrossRefGoogle Scholar
  22. 22.
    Prokopenko, M., Gerasimov, V., Tanev, I.: Measuring spatiotemporal coordination in a modular robotic system. In: Rocha, L., Yaeger, L., Bedau, M., Floreano, D., Goldstone, R., Vespignani, A. (eds.) Artificial Life X: Proceedings of the 10th International Conference on the Simulation and Synthesis of Living Systems, Bloomington, IN, USA, pp. 185–191 (2006)Google Scholar
  23. 23.
    Prokopenko, M., Obst, O., Wang, P.: Gliders 2014: dynamic tactics with Voronoi diagrams. In: RoboCup 2014 Symposium and Competitions: Team Description Papers, Joao Pessoa, Brazil, July 2014 (2014)Google Scholar
  24. 24.
    Prokopenko, M., Obst, O., Wang, P., Budden, D., Cliff, O.M.: Gliders 2013: tactical analysis with information dynamics. In: RoboCup 2013 Symposium and Competitions: Team Description Papers, Eindhoven, The Netherlands, June 2013 (2013)Google Scholar
  25. 25.
    Prokopenko, M., Wang, P., Obst, O., Jaurgeui, V.: Gliders 2016: integrating multi-agent approaches to tactical diversity. In: RoboCup 2016 Symposium and Competitions: Team Description Papers, Leipzig, Germany, July 2016 (2016)Google Scholar
  26. 26.
    Prokopenko, M.: Guided Self-organization: Inception. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-53734-9CrossRefGoogle Scholar
  27. 27.
    Prokopenko, M., Obst, O., Wang, P., Held, J.: Gliders 2012: tactics with action-dependent evaluation functions. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico, June 2012 (2012)Google Scholar
  28. 28.
    Prokopenko, M., Wang, P.: Relating the entropy of joint beliefs to multi-agent coordination. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 367–374. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45135-8_32CrossRefGoogle Scholar
  29. 29.
    Prokopenko, M., Wang, P.: Evaluating team performance at the edge of chaos. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 89–101. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-25940-4_8CrossRefGoogle Scholar
  30. 30.
    Prokopenko, M., Wang, P.: Disruptive innovations in RoboCup 2D soccer simulation league: from Cyberoos’98 to Gliders2016. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 529–541. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68792-6_44CrossRefGoogle Scholar
  31. 31.
    Prokopenko, M., Wang, P., Marian, S., Bai, A., Li, X., Chen, X.: RoboCup 2D soccer simulation league: evaluation challenges. In: Akiyama, H., Obst, O., Sammut, C., Tonidandel, F. (eds.) RoboCup 2017. LNCS (LNAI), vol. 11175, pp. 325–337. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00308-1_27CrossRefGoogle Scholar
  32. 32.
    Prokopenko, M., Wang, P., Obst, O.: Gliders 2015: opponent avoidance with bio-inspired flocking behaviour. In: RoboCup 2015 Symposium and Competitions: Team Description Papers, Hefei, China, July 2015 (2015)Google Scholar
  33. 33.
    Reis, L.P., Lau, N., Oliveira, E.C.: Situation based strategic positioning for coordinating a team of homogeneous agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) BRSDMAS 2000. LNCS (LNAI), vol. 2103, pp. 175–197. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44568-4_11CrossRefGoogle Scholar
  34. 34.
    Riley, P., Stone, P., Veloso, M.: Layered disclosure: revealing agents’ internals. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 61–72. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44631-1_5CrossRefzbMATHGoogle Scholar
  35. 35.
    Stone, P., et al.: Overview of Robocup-2000. In: Stone, P., Balch, T., Kraetzschmar, G. (eds.) RoboCup 2000. LNCS (LNAI), vol. 2019, pp. 1–29. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45324-5_1CrossRefzbMATHGoogle Scholar
  36. 36.
    Stone, P., Quinlan, M., Hester, T.: Can robots play soccer? In: Richards, T. (ed.) Soccer and Philosophy: Beautiful Thoughts on the Beautiful Game, Popular Culture and Philosophy, vol. 51, pp. 75–88. Open Court Publishing Company, Chicago (2010)Google Scholar
  37. 37.
    Stone, P., Riley, P., Veloso, M.: The CMUnited-99 champion simulator team. In: Veloso, M., Pagello, E., Kitano, H. (eds.) RoboCup 1999. LNCS (LNAI), vol. 1856, pp. 35–48. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45327-X_2CrossRefGoogle Scholar
  38. 38.
    Stone, P., Riley, P., Veloso, M.: Defining and using ideal teammate and opponent models. In: Proceedings of the 12th Annual Conference on Innovative Applications of Artificial Intelligence (2000)Google Scholar
  39. 39.
    Tanev, I., Yuta, K.: Epigenetic programming: genetic programming incorporating epigenetic learning through modification of histones. Inf. Sci. 178(23), 4469–4481 (2008)CrossRefGoogle Scholar
  40. 40.
    Tavafi, A., Nozari, N., Vatani, R., Yousefi, M.R., Rahmatinia, S., Pirdir, P.: MarliK 2012 soccer 2D simulation team description paper. In: RoboCup 2012 Symposium and Competitions: Team Description Papers, Mexico City, Mexico, June 2012 (2012)Google Scholar
  41. 41.
    Zuparic, M., Jauregui, V., Prokopenko, M., Yue, Y.: Quantifying the impact of communication on performance in multi-agent teams. Artif. Life Robot. 22(3), 357–373 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Complex Systems Research Group, Faculty of Engineering and ITThe University of SydneySydneyAustralia
  2. 2.Data Mining, CSIRO Data61EppingAustralia

Personalised recommendations