Skip to main content

Role of Modern Innovative Techniques for Assessing and Monitoring Environmental Pollution

  • Chapter
  • First Online:
Bioremediation and Biotechnology

Abstract

Modern technologies have been adapted to the needs of modern times, innovating with the design and construction of devices that allow environmental analysis to provide real-time, on-site analysis information and with high reliability, minimizing costs in the use of reagents, optimizing analysis times, and providing the opportunity to make decisions to respond to social, scientific, or technological problems. The microsystems of detection, control, and automation of chemical processes and analysis are the subject of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón-Herrera MT, Olmos-Márquez MA, Valles-Aragon C, Llorens E et al (2012) Assessments of plants for phytorremediation of arsenic-contaminated water and soil. Eur Chem Bull 2:121–125

    Google Scholar 

  • Alloway BJ (2013) Heavy metals in soils, trace metals and metalloids in soils and their bioavailibility. Springer, Berlin, pp 587–592

    Google Scholar 

  • Alva Díaz PS (2018) Estudio de iones presentes en el agua potable en sectores con suministro limitado de la provincia de Trujillo, por el método de cromatografía. Universidad Nacional de Trujillo, Trujillo, pp 6–9

    Google Scholar 

  • Alva Díaz PS, Angeles RD (2018) Estudio de iones presentes en el agua potable, en sectores con suministro limitado de la provincia de Trujillo, por el método de cromatografía ionica. Universidad Nacional de Trujillo, Trujillo, pp 24–30

    Google Scholar 

  • Alvarez S, Derfus A, Schwartz M (2009) Biomaterials 26–34

    Article  CAS  Google Scholar 

  • Berna A (2010) Metal oxide sensors for electronic noses and their application to food analysis. Sensors (Basel) 10(4):3882–3910

    Article  CAS  Google Scholar 

  • Bruguera AB (1996) Levels of DDT residues in human milk of Venezuelan women from various rural population. Elsevier Science, Amsterdam, pp 203–207

    Google Scholar 

  • Bustos LO (2014) Analytical microsystem for the monitoring and analysis of cobalt. J Mex Chem 411–415

    Google Scholar 

  • Bustos LO (2016) Detection and analysis of cobalt in continuous flow using an analytical microsystem. Sens Actuator B Chem, 11–16

    Google Scholar 

  • Calvo LA (2017) Diseño, construcción y evaluación de analizadores miniaturizados para su aplicación aeroespacial, medioambiental, alimentaria, biomédica e industrial. Universidad Autónoma de Barcelona, Bellaterra, pp 158–162

    Google Scholar 

  • Calvo LA et al (2017) Diseño, construcción y evaluación de analizadores miniaturizados para su aplicación aeroespacial, medioambiental, alimentaria, biomédica e industrial. Universitat Autonoma de Barcelona, Bellaterra, pp 157–179

    Google Scholar 

  • Carvalho FZ (1998) Rastreo de paguicidas en los trópicos. Boletin OEIA:113–118

    Google Scholar 

  • Cazes J (2011) Ewing’s analytical instrumentation handbook. Marcel Dekker, New York, pp 50–62, 45–53

    Google Scholar 

  • Coopeer J, Cass T (2004) Biosensors. Oxford University Press, Oxford

    Google Scholar 

  • Da Rocha Z (2012) Compact and autonomous multiwavelength microanalyzer for in-line and in situ colorimetric determinations. Lab Chip 12:109–115

    Article  Google Scholar 

  • De Prada C (2004) El futuro del c ontrol de procesos. Rev Iberoam Autom Inform Ind 1:5–14

    Google Scholar 

  • Dua VK, Pant C, Sharma VP (1996). Determination of level of HCH and DDT in soil, water, and whole blood from bioenvironmental and insecticide sprayed areas of malaria control. Indian Journal of Malariology. 33(1), 7–15 India

    Google Scholar 

  • Faraldos MG (2011) Tecnicas de Análisis y caracterización de materiales. Consejo superior de investigaciones Científicas, pp 21–35, 735–737

    Google Scholar 

  • Fernández OT (2003) Polímeros conductores: Síntesis, Propiedades y Aplicaciones Electroquímicas. Revista Iberoamericana de polímeros, pp 1–32

    Google Scholar 

  • Fóti G, Comninellis C (2007) Investigatons of electrochemical oxygen transfer reaction on boron-doped diamond electrodes. Electrochim Acta:1954–1961

    Google Scholar 

  • Girard JE (2010). Principles of environmental chemistry. Jones & Bartlett Burlington, 264–268

    Google Scholar 

  • Gregorio O, Irazustabarrena A (2001) Tendencias de Futuro en el Medio Ambiente industrial. Economia Industrial, pp 87–94

    Google Scholar 

  • Gründler P (2007) Chemical sensor. Springer, Berlin, pp 115–117

    Google Scholar 

  • Harvey D (2000) Modern analytical chemistry. McGraw Hill, New York, pp 115–122

    Google Scholar 

  • Hendy EJ, Peake BM (1996) Organochlorine pesticides in a dated sediment core from Mapua, Waimea Inlet, New Zealand. Marine Pollution Bulletin 32 (10):751–754

    Article  CAS  Google Scholar 

  • Hernandez DC (2016) Analytical techniques for environmental pollution control. Ciencia UNEMI, pp 118–131

    Google Scholar 

  • Hernandez Lucas GC (2002) Introducción al análisis instrumental. Ariel Ciencia:15–19

    Google Scholar 

  • Hernandez-Hernandez LG (2002) Introducción al Análisis Instrumental. Ariel Ciencia:88–96

    Google Scholar 

  • Ibañez García N(2007) Miniaturización de analizadores químicos mediante la tecnología LTCC. Universidad Autonoma de Barcelona, Bellaterra, pp –

    Google Scholar 

  • Ibañez García N (2017) Miniaturización de analizadores químicos mediente la tecnología LTCC. Universidad Autónoma de Barcelona, Bellaterra, pp 18–21

    Google Scholar 

  • Ionel I, Francisc P (2010) Methods for online monitoring of air pollution concentration. Air Quality pp 85–90

    Google Scholar 

  • Ionel I, Popescu F (2011) Methods for online monitoring of air pollution concentration. Air Quality, pp 82–114

    Google Scholar 

  • Ionel I, Popescu F, Padure G (2008) Method for determination of an emission factor for a surface source. Optoelectr Adv Mater:851–854

    Google Scholar 

  • Jerry S (2004) Control de la contaminación ambiental. El Medio Ambiente, 55–60

    Google Scholar 

  • Jorn HN, Laurindsen PS (2001) Gestion y reciclado de residuos solidos. Control de la Contaminación Ambiental 55.44–55-46

    Google Scholar 

  • Kaur P, Kaur S, Singh K, Sharma PR, Kaur T (2011) Indole-based chemosensor for Hg2+ and Cu2+ ions: applications in molecular switches and live cell imaging. Dalton Transactions, 40(41):10818–10821.

    Article  CAS  Google Scholar 

  • Kolb H (1999) Química para el nuevo milenio. Prentice Hall, Bergen, pp 93–95

    Google Scholar 

  • Lee AC, Ye J-S, Tan N, Daniel P, Sheu F-S, Kiat Heng C, Meng Lim T (2007) Carbon nanotube-based labels for highly sensitive colorimetric and aggregation-based visual detection of nucleic acids. Nanotechnology 18(45):455102.1–455102.9

    Article  Google Scholar 

  • Linares-Hernández, Ivonne; Martínez-Miranda, Verónica; Barrera-Díaz, Carlos; Pavón-Romero, Sergio; Bernal-Martínez, Lina; Lugo-Lugo, Violeta (2011) Oxidation of persistent organic matter in industrial wastewater electrochemical treatments. Avances en Ciencias e Ingenieria 2:21–36

    Google Scholar 

  • Lobnik AT (2011) Opticla chemical sensors: desing and applications. Adv Chem Sens:1–22

    Google Scholar 

  • López FR (1993) Determination of chlorinated insecticides of agricultural workers. Elsevier Science, Amsterdam, pp 152–156

    Google Scholar 

  • López AC (2017) Diseño, construcción y evaluación de analizadores miniaturizados. Universidad Autónoma de Barcelona, Bellaterra, pp 157–166

    Google Scholar 

  • Lucas HH (2002) Introducción al análisis instrumental. Ariel Ciencia, pp 15–21, 33–39

    Google Scholar 

  • Murray RM (2003) Future directions in control, dynamics and systems. EJC, pp 144–158

    Google Scholar 

  • OPTI (2001) Medioambiente: Tendencias y Tecnologías a medio y largo plazo. MCYT-CDTI-OPTI, pp 50–62

    Google Scholar 

  • Ortiz GI (2001) Tendencias de Futuro en el Medio Ambiente Industrial, Tecnologías y Escenarios. Economia Industrial. pp 87–95

    Google Scholar 

  • Rouessac F (2004) Chemical analysis: Modern instrumental methods and techniques. Wiley, New York

    Google Scholar 

  • Rubio JD, Hernández AJ (2016) Sensor system Based in Neutral Networks for the Environmental Monitoring. Ingeniería Investigación y Tecnología, pp 211–222

    Google Scholar 

  • Rubio JD, Hernández Aguilar JA, Jacob ACF (2016) Sistema sensor para el monitoreo ambiental basado en redes neuronales. Ingeniería Investigación y Tecnlología, pp 211–222

    Google Scholar 

  • Schwarzenbach PG (2007) Environmental organic chemistry. West Sussex, pp:135–149

    Google Scholar 

  • Smith R (2008) Guide to environmental analytical methods. Genium, New York, pp 41–58

    Google Scholar 

  • Spiegel J, Lucien Y. Maystre (2001) Control de la contaminación ambiental. El Medio Ambiente 55.1–55.2

    Google Scholar 

  • Torres DC (2004) Uso del análisis químico como herramienta para el monitoreo ambiental. Asociación Española de Ecología Terrestre, pp 2–6

    Google Scholar 

  • Torres D et al (2004) Agroquímicos un problema ambiental global: uso del analisis químico como herramienta para el monitoreo ambiental. Ecosistemas 13(3):2–6

    Google Scholar 

  • Wang W (2011) Advances in chemical sensors. InTech, Rijeka, pp 3–6

    Google Scholar 

  • Wen W (2011) Advances in chemical sensors. InTech, Rijeka, pp 11–15

    Google Scholar 

  • Ying XH (2011) Colorimetric detection of Cd2+ using gold nanoparticles. Analyst 1:3725–3730

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Natalia Bustos López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bustos López, O.N. (2020). Role of Modern Innovative Techniques for Assessing and Monitoring Environmental Pollution. In: Hakeem, K., Bhat, R., Qadri, H. (eds) Bioremediation and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-35691-0_4

Download citation

Publish with us

Policies and ethics