Skip to main content

Transcranial Direct Current Stimulation (tDCS) and Language/Speech: Can Patients Benefit from a Combined Therapeutic Approach?

  • Chapter
  • First Online:
Translational Neuroscience of Speech and Language Disorders

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The modulation of cognitive functions by noninvasive stimulation of the human brain has gained increasing attention over the last few decades. Transcranial direct current stimulation (tDCS) is an easy-to-use, painless, and affordable modulatory technique with no or minimal side effects. However, studies show no consistency in outcome measures due to high variability in terms of the methodological approach. This review starts with an enumeration and critical discussion of all the influencing parameters regarding (1) the tDCS protocol itself, (2) the targeted behavioral task, (3) the characteristics of the study group, and (4) the outcome measures used. First, the use of different settings with different combinations of parameters that might co-interfere hampers the comparability between studies. A focus on within instead of between subjects can give a better insight in which parameters to use in which conditions. Second, the area of stimulation has to depend on the used behavioral task and may crucially influence the therapeutic outcome and thereby its efficiency. Different brain networks play a role in language and motor speech, such as the prefrontal cortex, the inferior frontal gyrus, and the superior temporal gyrus. That means that therapists need to know which functional network is addressed by a given behavioral task and how this network can be targeted the most efficiently with tDCS taking into account the sustained neural damage. Third, different tasks might be differentially sensitive to performance changes induced by tDCS, depending on, e.g., task complexity. Finally, speech-language therapy is a type of neurorehabilitation that focuses not only on the rehabilitation of an impairment but also searches for compensating strategies aiming to improve functional communication. Therefore, this chapter also provides a road map summing up all the variables and linking them in a patient-centered virtuous circle, since speech-language therapy should be an iterative process where the clinician is in constant dialogue with the patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AoS:

Apraxia of speech

atDCS:

Anodal transcranial direct current stimulation

BA:

Brodmann area

ctDCS:

Cathodal transcranial direct current stimulation

DLPFC:

Dorsolateral prefrontal cortex

F:

Female

h:

Hours

HD tDCS:

High-density transcranial direct current stimulation

IFG:

Inferior frontal gyrus

ITG:

Inferior temporal gyrus

LTD:

Long-term depression

LTP:

Long-term potentiation

M:

Male

M1:

Primary motor cortex

min:

Minutes

MTG:

Middle temporal gyrus

NMDA:

N-Methyl-d-aspartate

PFC:

Prefrontal cortex

PML:

Principles of motor learning

pSTG:

Posterior superior temporal gyrus

STG:

Superior temporal gyrus

tDCS:

Transcranial direct current stimulation

TMS:

Transcranial magnetic stimulation

References

  • Adams, S. G., & Page, A. D. (2000). Effects of selected practice and feedback variables on speech motor learning. Journal of Medical Speech-Language Pathology, 8(4), 215–220.

    Google Scholar 

  • Antal, A., Keeser, D., Priori, A., Padberg, F., & Nitsche, M. A. (2015). Conceptual and procedural shortcomings of the systematic review evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review by Horvath and co-workers. Brain Stimulation, 8(4), 846.

    Google Scholar 

  • Arlotti, M., Rahman, A., Minhas, P., & Bikson, M. (2012). Axon terminal polarization induced by weak uniform DC electric fields: A modeling study (pp. 4575–4578). 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4575–4578.

    Google Scholar 

  • Austermann Hula, S. N., Robin, D. A., Maas, E., Ballard, K. J., & Schmidt, R. A. (2008). Effects of feedback frequency and timing on acquisition, retention, and transfer of speech skills in acquired apraxia of speech. Journal of Speech, Language, and Hearing Research, 51(5), 1088–1113.

    Google Scholar 

  • Baddeley, A. (2010). Working memory. Current Biology, 20(4), R136–R140.

    Google Scholar 

  • Baker, J. M., Rorden, C., & Fridriksson, J. (2010). Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke, 41(6), 1229–1236.

    Google Scholar 

  • Ballard, K. J., Maas, E., & Robin, D. A. (2007). Treating control of voicing in apraxia of speech with variable practice. Aphasiology, 21(12), 1195–1217.

    Google Scholar 

  • Bashir, N., & Howell, P. (2017). P198 tDCS stimulation of the left inferior frontal gyrus in a connected speech task with fluent speakers. Clinical Neurophysiology, 128(3), e111.

    Google Scholar 

  • Bastani, A., & Jaberzadeh, S. (2012). Does anodal transcranial direct current stimulation enhance excitability of the motor cortex and motor function in healthy individuals and subjects with stroke: a systematic review and meta-analysis. Clinical Neurophysiology, 123(4), 644–657.

    Google Scholar 

  • Behrens, T. E., & Sporns, O. (2012). Human connectomics. Current Opinion in Neurobiology, 22(1), 144–153.

    Google Scholar 

  • Belke, E., & Stielow, A. (2013). Cumulative and non-cumulative semantic interference in object naming: Evidence from blocked and continuous manipulations of semantic context. The Quarterly Journal of Experimental Psychology, 66(11), 2135–2160.

    Google Scholar 

  • Bennett, I. J., & Madden, D. J. (2014). Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187–205.

    Google Scholar 

  • Berryhill, M. E., & Jones, K. T. (2012). tDCS selectively improves working memory in older adults with more education. Neuroscience Letters, 521(2), 148–151.

    Google Scholar 

  • Bikson, M., Datta, A., Rahman, A., & Scaturro, J. (2010). Electrode montages for tDCS and weak transcranial electrical stimulation: Role of “return” electrode’s position and size. Clinical Neurophysiology, 121(12), 1976–1978.

    Google Scholar 

  • Binney, R. J., Zuckerman, B. M., Waller, H. N., Hung, J., Ashaie, S. A., & Reilly, J. (2018). Cathodal tDCS of the bilateral anterior temporal lobes facilitates semantically-driven verbal fluency. Neuropsychologia, 111, 62–71.

    Google Scholar 

  • Biou, E., Cassoudesalle, H., Cogné, M., Sibon, I., De Gabory, I., Dehail, P., … Glize, B. (2019). Transcranial direct current stimulation in post-stroke aphasia rehabilitation: A systematic review. Annals of Physical and Rehabilitation Medicine, 62(2), 104–121.

    Google Scholar 

  • Bislick, L. P., Weir, P. C., Spencer, K., Kendall, D., & Yorkston, K. M. (2012). Do principles of motor learning enhance retention and transfer of speech skills? A systematic review. Aphasiology, 26(5), 709–728.

    Google Scholar 

  • Bolognini, N., Convento, S., Banco, E., Mattioli, F., Tesio, L., & Vallar, G. (2015). Improving ideomotor limb apraxia by electrical stimulation of the left posterior parietal cortex. Brain, 138(2), 428–439.

    Google Scholar 

  • Bolognini, N., Pascual-Leone, A., & Fregni, F. (2009). Using non-invasive brain stimulation to augment motor training-induced plasticity. Journal of NeuroEngineering and Rehabilitation, 6(1), 8. https://doi.org/10.1186/1743-0003-6-8

  • Bradnam, L. V., Stinear, C. M., & Byblow, W. D. (2013). Ipsilateral motor pathways after stroke: implications for non-invasive brain stimulation. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00184

  • Brady, M. C., Kelly, H., Godwin, J., & Enderby, P. (2012). Speech and language therapy for aphasia following stroke. The cochrane collaboration: John Wiley & Sons, Ltd..

    Google Scholar 

  • Brem, A.-K., Unterburger, E., Speight, I., & Jäncke, L. (2014). Treatment of visuospatial neglect with biparietal tDCS and cognitive training: A single-case study. Frontiers in Systems Neuroscience, 8, 180.

    Google Scholar 

  • Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14(6), 277–290.

    Google Scholar 

  • Brückner, S., & Kammer, T. (2017). Both anodal and cathodal transcranial direct current stimulation improves semantic processing. Neuroscience, 343, 269–275. https://doi.org/10.1016/j.neuroscience.2016.12.015

  • Buchwald, A., Calhoun, H., Rimikis, S., Lowe, M. S., Wellner, R., & Edwards, D. J. (2019). Using tDCS to facilitate motor learning in speech production: The role of timing. Cortex, 111, 274–285. https://doi.org/10.1016/j.cortex.2018.11.014

  • Bütefisch, C. M., Kleiser, R., & Seitz, R. J. (2006). Post-lesional cerebral reorganisation: Evidence from functional neuroimaging and transcranial magnetic stimulation. Journal of Physiology-Paris, 99(4–6), 437–454.

    Google Scholar 

  • Bütefisch, C. M., Weβling, M., Netz, J., Seitz, R. J., & Hömberg, V. (2008). Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabilitation and Neural Repair, 22(1), 4–21. https://doi.org/10.1177/1545968307301769

  • Campana, S., Caltagirone, C., & Marangolo, P. (2015). Combining voxel-based lesion-symptom mapping (VLSM) with A-tDCS language treatment: Predicting outcome of recovery in nonfluent chronic aphasia. Brain Stimulation, 8(4), 769–776.

    Google Scholar 

  • Cappon, D., Jahanshahi, M., & Bisiacchi, P. (2016). Value and efficacy of transcranial direct current stimulation in the cognitive rehabilitation: A critical review since 2000. Frontiers in Neuroscience, 10. https://doi.org/10.3389/fnins.2016.00157

  • Cattaneo, Z., Pisoni, A., & Papagno, C. (2011). Transcranial direct current stimulation over Broca’s region improves phonemic and semantic fluency in healthy individuals. Neuroscience, 183, 64–70. https://doi.org/10.1016/j.neuroscience.2011.03.058

  • Cerruti, C., & Schlaug, G. (2009). Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. Journal of Cognitive Neuroscience, 21(10), 1980–1987.

    Google Scholar 

  • Chesters, J., Hsu, J. H., Bishop, D. V. M., Watkins, K. E., & Mottonen, R. (2017). Comparing effectiveness of three TDCS protocols on online and offline components of speech motor learning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 10(4), e27–e28.

    Google Scholar 

  • Chrysikou, E. G., & Hamilton, R. H. (2011). Noninvasive brain stimulation in the treatment of aphasia: Exploring interhemispheric relationships and their implications for neurorehabilitation. Restorative Neurology and Neuroscience, 6, 375–394. https://doi.org/10.3233/RNN-2011-0610

  • Church, J. A., Coalson, R. S., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2008). A developmental fMRI study of reading and repetition reveals changes in phonological and visual mechanisms over age. Cerebral Cortex, 18(9), 2054–2065. https://doi.org/10.1093/cercor/bhm228

  • Costafreda, S. G., Fu, C. H. Y., Lee, L., Everitt, B., Brammer, M. J., & David, A. S. (2006). A systematic review and quantitative appraisal of fMRI studies of verbal fluency: Role of the left inferior frontal gyrus. Human Brain Mapping, 27(10), 799–810. https://doi.org/10.1002/hbm.20221

  • Crinion, J., Turner, R., Grogan, A., Hanakawa, T., Noppeney, U., Devlin, J. T., … Price, C. J. (2006). Language control in the bilingual brain. Science, 312(5779), 1537–1540. https://doi.org/10.1126/science.1127761

  • Crosson, B. (2013). Thalamic mechanisms in language: A reconsideration based on recent findings and concepts. Brain and Language, 126(1), 73–88. https://doi.org/10.1016/j.bandl.2012.06.011

  • Damian, M. F., Vigliocco, G., & Levelt, W. J. M. (2001). Effects of semantic context in the naming of pictures and words. Cognition, 81(3), B77–B86. https://doi.org/10.1016/S0010-0277(01)00135-4

  • Datta, A., Baker, J. M., Bikson, M., & Fridriksson, J. (2011). Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimulation, 4(3), 169–174. https://doi.org/10.1016/j.brs.2010.11.001

  • Datta, A., Truong, D., Minhas, P., Parra, L. C., & Bikson, M. (2012). Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models. Frontiers in Psychiatry, 3. https://doi.org/10.3389/fpsyt.2012.00091

  • Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209. https://doi.org/10.1093/cercor/bhm155

  • de Aguiar, V., Bastiaanse, R., Capasso, R., Gandolfi, M., Smania, N., Rossi, G., & Miceli, G. (2015). Can tDCS enhance item-specific effects and generalization after linguistically motivated aphasia therapy for verbs? Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00190

  • de Aguiar, V., Paolazzi, C. L., & Miceli, G. (2015). tDCS in post-stroke aphasia: The role of stimulation parameters, behavioral treatment and patient characteristics. Cortex, 63, 296–316. https://doi.org/10.1016/j.cortex.2014.08.015

  • De Vries, M. H., Barth, A. C., Maiworm, S., Knecht, S., Zwitserlood, P., & Flöel, A. (2010). Electrical stimulation of Broca’s area enhances implicit learning of an artificial grammar. Journal of Cognitive Neuroscience, 22(11), 2427–2436.

    Google Scholar 

  • Dick, A. S., Bernal, B., & Tremblay, P. (2014). The language connectome: New pathways, new concepts. The Neuroscientist, 20(5), 453–467. https://doi.org/10.1177/1073858413513502

  • Dick, A. S., Goldin-Meadow, S., Hasson, U., Skipper, J. I., & Small, S. L. (2009). Co-speech gestures influence neural activity in brain regions associated with processing semantic information. Human Brain Mapping, 30(11), 3509–3526. https://doi.org/10.1002/hbm.20774

  • Duffy, J. R. (2013). Motor speech disorders-E-book: Substrates, differential diagnosis, and management. Elsevier Health Sciences.

    Google Scholar 

  • Edwards, D., Cortes, M., Datta, A., Minhas, P., Wassermann, E. M., & Bikson, M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 74, 266–275. https://doi.org/10.1016/j.neuroimage.2013.01.042

  • Ehlis, A.-C., Haeussinger, F. B., Gastel, A., Fallgatter, A. J., & Plewnia, C. (2016). Task-dependent and polarity-specific effects of prefrontal transcranial direct current stimulation on cortical activation during word fluency. NeuroImage, 140, 134–140. https://doi.org/10.1016/j.neuroimage.2015.12.047

  • Eickhoff, S. B., Heim, S., Zilles, K., & Amunts, K. (2009). A systems perspective on the effective connectivity of overt speech production. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1896), 2399–2421. https://doi.org/10.1098/rsta.2008.0287

  • El Hachioui, H., Lingsma, H. F., van de Sandt-Koenderman, M. W. M. E., Dippel, D. W. J., Koudstaal, P. J., & Visch-Brink, E. G. (2013). Long-term prognosis of aphasia after stroke. Journal of Neurology, Neurosurgery & Psychiatry, 84(3), 310–315. https://doi.org/10.1136/jnnp-2012-302596

  • Fertonani, A., Brambilla, M., Cotelli, M., & Miniussi, C. (2014). The timing of cognitive plasticity in physiological aging: A tDCS study of naming. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00131

  • Fertonani, A., Ferrari, C., & Miniussi, C. (2015). What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clinical Neurophysiology, 126(11), 2181–2188. https://doi.org/10.1016/j.clinph.2015.03.015

  • Fertonani, A., & Miniussi, C. (2017). Transcranial electrical stimulation. The Neuroscientist, 23(2), 109–123.

    Google Scholar 

  • Fertonani, A., Rosini, S., Cotelli, M., Rossini, P. M., & Miniussi, C. (2010). Naming facilitation induced by transcranial direct current stimulation. Behavioural Brain Research, 208(2), 311–318. https://doi.org/10.1016/j.bbr.2009.10.030

  • Fiori, V., Cipollari, S., Caltagirone, C., & Marangolo, P. (2014). “If two witches would watch two watches, which witch would watch which watch?” tDCS over the left frontal region modulates tongue twister repetition in healthy subjects. Neuroscience, 256, 195–200.

    Google Scholar 

  • Fiori, V., Cipollari, S., Di Paola, M., Razzano, C., Caltagirone, C., & Marangolo, P. (2013). tDCS stimulation segregates words in the brain: Evidence from aphasia. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00269

  • Fiori, V., Coccia, M., Marinelli, C. V., Vecchi, V., Bonifazi, S., Ceravolo, M. G., … Marangolo, P. (2011). Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. Journal of Cognitive Neuroscience, 23(9), 2309–2323. https://doi.org/10.1162/jocn.2010.21579

  • Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E., & Greenwood, P. M. (2016). Placebo effects in cognitive training. Proceedings of the National Academy of Sciences, 113(27), 7470–7474. https://doi.org/10.1073/pnas.1601243113

  • Fridriksson, J., Richardson, J. D., Baker, J. M., & Rorden, C. (2011). Transcranial direct current stimulation improves naming reaction time in fluent aphasia: A double-blind, sham-controlled study. Stroke, 42(3), 819–821. https://doi.org/10.1161/STROKEAHA.110.600288

  • Fritsch, B., Reis, J., Martinowich, K., Schambra, H. M., Ji, Y., Cohen, L. G., & Lu, B. (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning. Neuron, 66(2), 198–204. https://doi.org/10.1016/j.neuron.2010.03.035

  • Fuertinger, S., Horwitz, B., & Simonyan, K. (2015). The functional connectome of speech control. PLoS Biology, 13(7), e1002209.

    Google Scholar 

  • Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850. https://doi.org/10.1016/j.clinph.2005.12.003

  • Gauvin, H. S., Meinzer, M., & de Zubicaray, G. I. (2017). tDCS effects on word production: Limited by design? Comment on Westwood et al. (2017). Cortex, 96, 137–142. https://doi.org/10.1016/j.cortex.2017.06.017

  • Glass, T. A., Matchar, D. B., Belyea, M., & Feussner, J. R. (1993). Impact of social support on outcome in first stroke. Stroke, 24(1), 64–70. https://doi.org/10.1161/01.STR.24.1.64

  • Grimaldi, G., Argyropoulos, G. P., Bastian, A., Cortes, M., Davis, N. J., Edwards, D. J., … Celnik, P. (2016). Cerebellar transcranial direct current stimulation (ctDCS) a novel approach to understanding cerebellar function in health and disease. The Neuroscientist, 22(1), 83–97.

    Google Scholar 

  • Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579–582. https://doi.org/10.1126/science.1254604

  • Hamilton, R. H., Chrysikou, E. G., & Coslett, B. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and Language, 118(1–2), 40–50. https://doi.org/10.1016/j.bandl.2011.02.005

  • Hartwigsen, G. (2015). The neurophysiology of language: Insights from non-invasive brain stimulation in the healthy human brain. Brain and Language, 148, 81–94. https://doi.org/10.1016/j.bandl.2014.10.007

  • Hebb, D. O. (1949). The organization of behavior. New York, NY: John Wiley & Sons, Ltd..

    Google Scholar 

  • Heim, S., Eickhoff, S. B., & Amunts, K. (2008). Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? NeuroImage, 40(3), 1362–1368.

    Google Scholar 

  • Hersh, D., Worrall, L., Howe, T., Sherratt, S., & Davidson, B. (2012). SMARTER goal setting in aphasia rehabilitation. Aphasiology, 26(2), 220–233. https://doi.org/10.1080/02687038.2011.640392

  • Hesse, S., Werner, C., Schonhardt, E. M., Bardeleben, A., Jenrich, W., & Kirker, S. G. B. (2007). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restorative Neurology and Neuroscience, 25, 9–15.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in Cognitive Sciences, 4(4), 131–138. https://doi.org/10.1016/S1364-6613(00)01463-7

  • Hirshorn, E. A., & Thompson-Schill, S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: Neural correlates of switching during verbal fluency. Neuropsychologia, 44(12), 2547–2557. https://doi.org/10.1016/j.neuropsychologia.2006.03.035

  • Holland, R., & Crinion, J. (2012). Can tDCS enhance treatment of aphasia after stroke? Aphasiology, 26(9), 1169–1191. https://doi.org/10.1080/02687038.2011.616925

  • Holland, R., Leff, A. P., Josephs, O., Galea, J. M., Desikan, M., Price, C. J., … Crinion, J. (2011). Speech facilitation by left inferior frontal cortex stimulation. Current Biology, 21(16), 1403–1407. https://doi.org/10.1016/j.cub.2011.07.021

  • Holland, R., Leff, A. P., Penny, W. D., Rothwell, J. C., & Crinion, J. (2016). Modulation of frontal effective connectivity during speech. NeuroImage, 140, 126–133. https://doi.org/10.1016/j.neuroimage.2016.01.037

  • Horvath, J. C., Forte, J. D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimulation, 8(3), 535–550. https://doi.org/10.1016/j.brs.2015.01.400

  • Horwitz, F. M., Heng, C. T., & Quazi, H. A. (2003). Finders, keepers? Attracting, motivating and retaining knowledge workers. Human Resource Management Journal, 13(4), 23–44. https://doi.org/10.1111/j.1748-8583.2003.tb00103.x

  • Howard, D., Nickels, L., Coltheart, M., & Cole-Virtue, J. (2006). Cumulative semantic inhibition in picture naming: Experimental and computational studies. Cognition, 100(3), 464–482.

    Google Scholar 

  • Hummel, F. C., & Cohen, L. G. (2006). Non-invasive brain stimulation: A new strategy to improve neurorehabilitation after stroke? The Lancet Neurology, 5(8), 708–712. https://doi.org/10.1016/S1474-4422(06)70525-7

  • Indefrey, P. (2011). The spatial and temporal signatures of word production components: A critical update. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00255

  • Indefrey, P., & Levelt, W. J. M. (2004). The spatial and temporal signatures of word production components. Cognition, 92(1–2), 101–144. https://doi.org/10.1016/j.cognition.2002.06.001

  • Ito, T., Coppola, J. H., & Ostry, D. J. (2016). Speech motor learning changes the neural response to both auditory and somatosensory signals. Scientific Reports, 6(1). https://doi.org/10.1038/srep25926

  • Iyer, M. B., Mattu, U., Grafman, J., Lomarev, M., Sato, S., & Wassermann, E. M. (2005). Safety and cognitive effect of frontal DC brain polarization in healthy individuals. Neurology, 64, 872–875.

    Google Scholar 

  • Jacobson, L., Koslowsky, M., & Lavidor, M. (2012). tDCS polarity effects in motor and cognitive domains: A meta-analytical review. Experimental Brain Research, 216(1), 1–10. https://doi.org/10.1007/s00221-011-2891-9

  • Jagust, W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron, 77(2), 219–234. https://doi.org/10.1016/j.neuron.2013.01.002

  • Jones, K., & Croot, K. (2016). The effect of blocked, random and mixed practice schedules on speech motor learning of tongue twisters in unimpaired speakers. Motor Control, 20(4), 350–379.

    Google Scholar 

  • Jones, K. T., Stephens, J. A., Alam, M., Bikson, M., & Berryhill, M. E. (2015). Longitudinal neurostimulation in older adults improves working memory. PLOS ONE, 10(4), e0121904. https://doi.org/10.1371/journal.pone.0121904

  • Jung, I.-Y., Lim, J. Y., Kang, E. K., Sohn, H. M., & Paik, N.-J. (2011). The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Annals of Rehabilitation Medicine, 35(4), 460. https://doi.org/10.5535/arm.2011.35.4.460

  • Kaipa, R., & Peterson, A. M. (2016). A systematic review of treatment intensity in speech disorders. International Journal of Speech-Language Pathology, 18(6), 507–520.

    Google Scholar 

  • Kang, E. K., Kim, Y. K., Sohn, H. M., Cohen, L., & Paik, N. (2011). Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restorative Neurology and Neuroscience, 3, 141–152. https://doi.org/10.3233/RNN-2011-0587

  • Kang, N., Summers, J. J., & Cauraugh, J. H. (2016). Transcranial direct current stimulation facilitates motor learning post-stroke: A systematic review and meta-analysis. Journal of Neurology, Neurosurgery & Psychiatry, 87(4), 345–355. https://doi.org/10.1136/jnnp-2015-311242

  • Katz, B., Au, J., Buschkuehl, M., Abagis, T., Zabel, C., Jaeggi, S. M., & Jonides, J. (2017). Individual differences and long-term consequences of tDCS-augmented cognitive training. Journal of Cognitive Neuroscience, 29(9), 1498–1508. https://doi.org/10.1162/jocn_a_01115

  • Kim, W., Jung, S., Oh, M., Min, Y., Lim, J., & Paik, N. (2014). Effect of repetitive transcranial magnetic stimulation over the cerebellum on patients with ataxia after posterior circulation stroke: A pilot study. Journal of Rehabilitation Medicine, 46(5), 418–423. https://doi.org/10.2340/16501977-1802

  • Klaus, J., & Schutter, D. J. L. G. (2018). Non-invasive brain stimulation to investigate language production in healthy speakers: A meta-analysis. Brain and Cognition, 123, 10–22. https://doi.org/10.1016/j.bandc.2018.02.007

  • Krause, B., & Cohen Kadosh, R. (2014). Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Frontiers in Systems Neuroscience, 8(25). https://doi.org/10.3389/fnsys.2014.00025

  • Lee, S. Y., Cheon, H.-J., Yoon, K. J., Chang, W. H., & Kim, Y.-H. (2013). Effects of dual transcranial direct current stimulation for aphasia in chronic stroke patients. Annals of Rehabilitation Medicine, 37(5), 603. https://doi.org/10.5535/arm.2013.37.5.603

  • Lefaucheur, J.-P. (2016). A comprehensive database of published tDCS clinical trials (2005–2016). Neurophysiologie Clinique/Clinical Neurophysiology, 46(6), 319–398. https://doi.org/10.1016/j.neucli.2016.10.002

  • Li, L., Abutalebi, J., Zou, L., Yan, X., Liu, L., Feng, X., … Ding, G. (2015). Bilingualism alters brain functional connectivity between “control” regions and “language” regions: Evidence from bimodal bilinguals. Neuropsychologia, 71, 236–247. https://doi.org/10.1016/j.neuropsychologia.2015.04.007

  • Lisman, A. L., & Sadagopan, N. (2013). Focus of attention and speech motor performance. Journal of Communication Disorders, 46(3), 281–293. https://doi.org/10.1016/j.jcomdis.2013.02.002

  • Maas, E. (2015). Optimalisering van spraaktherapie: De toepassing van trainingsprincipes voor het leren van motorische vaardigheden. Stem-, Spraak-, en Taalpathologie, 20, 44–70.

    Google Scholar 

  • Maas, M. B., Lev, M. H., Ay, H., Singhal, A. B., Greer, D. M., Smith, W. S., … Furie, K. L. (2012). The prognosis for aphasia in stroke. Journal of Stroke and Cerebrovascular Diseases, 21(5), 350–357. https://doi.org/10.1016/j.jstrokecerebrovasdis.2010.09.009

  • Madhavan, K. M., McQueeny, T., Howe, S. R., Shear, P., & Szaflarski, J. (2014). Superior longitudinal fasciculus and language functioning in healthy aging. Brain Research, 1562, 11–22. https://doi.org/10.1016/j.brainres.2014.03.012

  • Manenti, R., Petesi, M., Brambilla, M., Rosini, S., Miozzo, A., Padovani, A., … Cotelli, M. (2015). Efficacy of semantic–phonological treatment combined with tDCS for verb retrieval in a patient with aphasia. Neurocase, 21(1), 109–119. https://doi.org/10.1080/13554794.2013.873062

  • Manjaly, Z. M., Marshall, J. C., Stephan, K. E., Gurd, J. M., Zilles, K., & Fink, G. R. (2005). Context-dependent interactions of left posterior inferior frontal gyrus in a local visual search task unrelated to language. Cognitive Neuropsychology, 22(3–4), 292–305. https://doi.org/10.1080/02643290442000149

  • Manuel, A. L., & Schnider, A. (2016). Effect of prefrontal and parietal tDCS on learning and recognition of verbal and non-verbal material. Clinical Neurophysiology, 127(7), 2592–2598. https://doi.org/10.1016/j.clinph.2016.04.015

  • Marangolo, P. (2017). The potential effects of transcranial direct current stimulation (tDCS) on language functioning: Combining neuromodulation and behavioral intervention in aphasia. Neuroscience Letters. https://doi.org/10.1016/j.neulet.2017.12.057

  • Marangolo, P., Fiori, V., Calpagnano, M. A., Campana, S., Razzano, C., Caltagirone, C., & Marini, A. (2013). tDCS over the left inferior frontal cortex improves speech production in aphasia. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00539

  • Marangolo, P., Fiori, V., Campana, S., Antonietta Calpagnano, M., Razzano, C., Caltagirone, C., & Marini, A. (2014). Something to talk about: Enhancement of linguistic cohesion through tdCS in chronic non fluent aphasia. Neuropsychologia, 53, 246–256. https://doi.org/10.1016/j.neuropsychologia.2013.12.003

  • Marangolo, P., Fiori, V., Cipollari, S., Campana, S., Razzano, C., Di Paola, M., … Caltagirone, C. (2013). Bihemispheric stimulation over left and right inferior frontal region enhances recovery from apraxia of speech in chronic aphasia. European Journal of Neuroscience, 38(9), 3370–3377. https://doi.org/10.1111/ejn.12332

  • Marangolo, P., Fiori, V., Di Paola, M., Cipollari, S., Razzano, C., Oliveri, M., & Caltagirone, C. (2013). Differential involvement of the left frontal and temporal regions in verb naming: A tDCS treatment study. Restorative Neurology and Neuroscience, 1, 63–72. https://doi.org/10.3233/RNN-120268

  • Marangolo, P., Fiori, V., Gelfo, F., Shofany, J., Razzano, C., Caltagirone, C., & Angelucci, F. (2014). Bihemispheric tDCS enhances language recovery but does not alter BDNF levels in chronic aphasic patients. Restorative Neurology and Neuroscience, 2, 367–379. https://doi.org/10.3233/RNN-130323

  • Marangolo, P., Fiori, V., Sabatini, U., De Pasquale, G., Razzano, C., Caltagirone, C., & Gili, T. (2016). Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: Preliminary data from aphasia. Journal of Cognitive Neuroscience, 28(5), 724–738. https://doi.org/10.1162/jocn_a_00927

  • Marangolo, P., Marinelli, C. V., Bonifazi, S., Fiori, V., Ceravolo, M. G., Provinciali, L., & Tomaiuolo, F. (2011). Electrical stimulation over the left inferior frontal gyrus (IFG) determines long-term effects in the recovery of speech apraxia in three chronic aphasics. Behavioural Brain Research, 225(2), 498–504.

    Google Scholar 

  • Mattson, M. P. (2015). Lifelong brain health is a lifelong challenge: From evolutionary principles to empirical evidence. Ageing Research Reviews, 20, 37–45. https://doi.org/10.1016/j.arr.2014.12.011

  • McDermott, K. B., Petersen, S. E., Watson, J. M., & Ojemann, J. G. (2003). A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia, 41(3), 293–303. https://doi.org/10.1016/S0028-3932(02)00162-8

  • Meinzer, M., Darkow, R., Lindenberg, R., & Flöel, A. (2016). Electrical stimulation of the motor cortex enhances treatment outcome in post-stroke aphasia. Brain, 139(4), 1152–1163. https://doi.org/10.1093/brain/aww002

  • Meinzer, M., Flaisch, T., Seeds, L., Harnish, S., Antonenko, D., Witte, V., … Crosson, B. (2012). Same modulation but different starting points: Performance modulates age differences in inferior frontal cortex activity during word-retrieval. PLOS ONE, 7(3), e33631. https://doi.org/10.1371/journal.pone.0033631

  • Meinzer, M., Flaisch, T., Wilser, L., Eulitz, C., Rockstroh, B., Conway, T., … Crosson, B. (2009). Neural signatures of semantic and phonemic fluency in young and old adults. Journal of Cognitive Neuroscience, 21(10), 2007–2018. https://doi.org/10.1162/jocn.2009.21219

  • Meinzer, M., Lindenberg, R., Antonenko, D., Flaisch, T., & Floel, A. (2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. Journal of Neuroscience, 33(30), 12470–12478. https://doi.org/10.1523/JNEUROSCI.5743-12.2013

  • Meinzer, M., Lindenberg, R., Sieg, M. M., Nachtigall, L., Ulm, L., & Floel, A. (2014). Transcranial direct current stimulation of the primary motor cortex improves word-retrieval in older adults. Frontiers in Aging Neuroscience, 6. https://doi.org/10.3389/fnagi.2014.00253

  • Miniussi, C., Harris, J. A., & Ruzzoli, M. (2013). Modelling non-invasive brain stimulation in cognitive neuroscience. Neuroscience & Biobehavioral Reviews, 37(8), 1702–1712. https://doi.org/10.1016/j.neubiorev.2013.06.014

  • Mitchell, C., Bowen, A., Tyson, S., Butterfint, Z., & Conroy, P. (2017). Interventions for dysarthria due to stroke and other adult-acquired, non-progressive brain injury. Cochrane Database of Systematic Reviews. https://doi.org/10.1002/14651858.CD002088.pub3

  • Moliadze, V., Antal, A., & Paulus, W. (2010). Electrode-distance dependent after-effects of transcranial direct and random noise stimulation with extracephalic reference electrodes. Clinical Neurophysiology, 121(12), 2165–2171. https://doi.org/10.1016/j.clinph.2010.04.033

  • Monte-Silva, K., Kuo, M.-F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M. A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424–432. https://doi.org/10.1016/j.brs.2012.04.011

  • Monti, A., Cogiamanian, F., Marceglia, S., Ferrucci, R., Mameli, F., Mrakic-Sposta, S., … Priori, A. (2008). Improved naming after transcranial direct current stimulation in aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 79(4), 451–453. https://doi.org/10.1136/jnnp.2007.135277

  • Monti, A., Ferrucci, R., Fumagalli, M., Mameli, F., Cogiamanian, F., Ardolino, G., & Priori, A. (2013). Transcranial direct current stimulation (tDCS) and language. Journal of Neurology, Neurosurgery & Psychiatry, 84(8), 832–842. https://doi.org/10.1136/jnnp-2012-302825

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(3), 633–639.

    Google Scholar 

  • Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626.

    Google Scholar 

  • O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & De Souza, L. H. (2012). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2mA. PLOS ONE, 7(10), e47514. https://doi.org/10.1371/journal.pone.0047514

  • Oh, A., Duerden, E. G., & Pang, E. W. (2014). The role of the insula in speech and language processing. Brain and Language, 135, 96–103. https://doi.org/10.1016/j.bandl.2014.06.003

  • Oldrati, V., & Schutter, D. J. L. G. (2017). Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: A meta-analysis. The Cerebellum. https://doi.org/10.1007/s12311-017-0877-2

  • Opitz, A., Paulus, W., Will, S., Antunes, A., & Thielscher, A. (2015). Determinants of the electric field during transcranial direct current stimulation. NeuroImage, 109, 140–150.

    Google Scholar 

  • O’Shea, J., Boudrias, M.-H., Stagg, C. J., Bachtiar, V., Kischka, U., Blicher, J. U., & Johansen-Berg, H. (2014). Predicting behavioural response to TDCS in chronic motor stroke. NeuroImage, 85, 924–933. https://doi.org/10.1016/j.neuroimage.2013.05.096

  • Parazzini, M., Fiocchi, S., Liorni, I., & Ravazzani, P. (2015). Effect of the interindividual variability on computational modeling of transcranial direct current stimulation. Computational Intelligence and Neuroscience, 2015, 1–9. https://doi.org/10.1155/2015/963293

  • Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60(1), 173–196. https://doi.org/10.1146/annurev.psych.59.103006.093656

  • Peach, R. K., & Chapey, R. (2008). Global aphasia: Identification and management. In Language intervention strategies in aphasia and related neurogenic communication disorders (pp. 583–588).

    Google Scholar 

  • Pedersen, P. M., Vinter, K., & Olsen, T. S. (2004). Aphasia after stroke: Type, severity and prognosis. Cerebrovascular Diseases, 17(1), 35–43. https://doi.org/10.1159/000073896

  • Penolazzi, B., Pastore, M., & Mondini, S. (2013). Electrode montage dependent effects of transcranial direct current stimulation on semantic fluency. Behavioural Brain Research, 248, 129–135. https://doi.org/10.1016/j.bbr.2013.04.007

  • Perceval, G., Flöel, A., & Meinzer, M. (2016). Can transcranial direct current stimulation counteract age-associated functional impairment? Neuroscience & Biobehavioral Reviews, 65, 157–172. https://doi.org/10.1016/j.neubiorev.2016.03.028

  • Peretz, Y., & Lavidor, M. (2013). Enhancing lexical ambiguity resolution by brain polarization of the right posterior superior temporal sulcus. Cortex, 49(4), 1056–1062. https://doi.org/10.1016/j.cortex.2012.03.015

  • Pihlajamäki, M., Tanila, H., Hänninen, T., Könönen, M., Laakso, M., Partanen, K., … Aronen, H. J. (2000). Verbal fluency activates the left medial temporal lobe: A functional magnetic resonance imaging study. Annals of Neurology, 47(4), 470–476. https://doi.org/10.1002/1531-8249(200004)47:4<470::AID-ANA10>3.0.CO;2-M

  • Pisoni, A., Papagno, C., & Cattaneo, Z. (2012). Neural correlates of the semantic interference effect: New evidence from transcranial direct current stimulation. Neuroscience, 223, 56–67. https://doi.org/10.1016/j.neuroscience.2012.07.046

  • Pisoni, A., Mattavelli, G., Papagno, C., Rosanova, M., Casali, A. G., & Romero Lauro, L. J. (2018). Cognitive enhancement induced by anodal tDCS drives circuit-specific cortical plasticity. Cerebral Cortex, 28(4), 1132–1140. https://doi.org/10.1093/cercor/bhx021

  • Pisoni, A., Turi, Z., Raithel, A., Ambrus, G. G., Alekseichuk, I., Schacht, A., … Antal, A. (2015). Separating recognition processes of declarative memory via anodal tDCS: Boosting old item recognition by temporal and new item detection by parietal stimulation. PLOS ONE, 10(3), e0123085. https://doi.org/10.1371/journal.pone.0123085

  • Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22(14), 1314–1318. https://doi.org/10.1016/j.cub.2012.05.021

  • Poreisz, C., Boros, K., Antal, A., & Paulus, W. (2007). Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Research Bulletin, 72(4–6), 208–214. https://doi.org/10.1016/j.brainresbull.2007.01.004

  • Prehn, K., & Flöel, A. (2015). Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS. Frontiers in Cellular Neuroscience, 9. https://doi.org/10.3389/fncel.2015.00355

  • Rabipour, S., Wu, A. D., Davidson, P. S. R., & Iacoboni, M. (2018). Expectations may influence the effects of transcranial direct current stimulation. Neuropsychologia, 119, 524–534. https://doi.org/10.1016/j.neuropsychologia.2018.09.005

  • Raffin, E., & Siebner, H. R. (2014). Transcranial brain stimulation to promote functional recovery after stroke. Current Opinion in Neurology, 27(1), 54–60. https://doi.org/10.1097/WCO.0000000000000059

  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., … Krakauer, J. W. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences, 106(5), 1590–1595. https://doi.org/10.1073/pnas.0805413106

  • Rollans, C., Cheema, K., Georgiou, G. K., & Cummine, J. (2017). Pathways of the inferior frontal occipital fasciculus in overt speech and reading. Neuroscience, 364, 93–106. https://doi.org/10.1016/j.neuroscience.2017.09.011

  • Rosso, C., Perlbarg, V., Valabregue, R., Arbizu, C., Ferrieux, S., Alshawan, B., … Samson, Y. (2014). Broca’s area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimulation, 7(5), 627–635. https://doi.org/10.1016/j.brs.2014.06.004

  • Russo, R., Wallace, D., Fitzgerald, P. B., & Cooper, N. R. (2013). Perception of comfort during active and sham transcranial direct current stimulation: A double blind study. Brain Stimulation, 6(6), 946–951. https://doi.org/10.1016/j.brs.2013.05.009

  • Saidmanesh, M., Pouretemad, H. R., Amini, A., Nillipour, R., & Ekhtian, H. (2012). Effects of transcranial direct current stimulation on working memory in patients with non-fluent aphasia disorder. Research Journal of Biological Sciences, 7(7), 290–296.

    Google Scholar 

  • Sandars, M., Cloutman, L., & Woollams, A. M. (2016). Taking sides: An integrative review of the impact of laterality and polarity on efficacy of therapeutic transcranial direct current stimulation for anomia in chronic poststroke aphasia. Neural Plasticity, 2016, 8428256. https://doi.org/10.1155/2016/8428256

  • Sarkar, A., Dowker, A., & Cohen Kadosh, R. (2014). Cognitive enhancement or cognitive cost: Trait-specific outcomes of brain stimulation in the case of mathematics anxiety. Journal of Neuroscience, 34(50), 16605–16610. https://doi.org/10.1523/JNEUROSCI.3129-14.2014

  • Saturnino, G. B., Antunes, A., & Thielscher, A. (2015). On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage, 120, 25–35.

    Google Scholar 

  • Saucedo Marquez, C. M., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00333

  • Saur, D. (2006). Dynamics of language reorganization after stroke. Brain, 129(6), 1371–1384. https://doi.org/10.1093/brain/awl090

  • Schmidt, R. A. (1988). Motor and action perspectives on motor behaviour. Advances in Psychology, 50, 3–44.

    Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2005). Motor learning and control: A behavioral emphasis. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Schwarz, K. A., Pfister, R., & Büchel, C. (2016). Rethinking explicit expectations: Connecting placebos, social cognition, and contextual perception. Trends in Cognitive Sciences, 20(6), 469–480. https://doi.org/10.1016/j.tics.2016.04.001

  • Shah-Basak, P. P., Norise, C., Garcia, G., Torres, J., Faseyitan, O., & Hamilton, R. H. (2015). Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00201

  • Shahid, S., Wen, P., & Ahfock, T. (2014). Assessment of electric field distribution in anisotropic cortical and subcortical regions under the influence of tDCS: Impact of Brain anisotropy on electric field. Bioelectromagnetics, 35(1), 41–57. https://doi.org/10.1002/bem.21814

  • Simione, M., Fregni, F., & Green, J. R. (2018). The effect of transcranial direct current stimulation on jaw motor function is task dependent: Speech, syllable repetition and chewing. Frontiers in Human Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00033

  • Smith, D. V., & Clithero, J. A. (2009). Manipulating executive function with transcranial direct current stimulation. Frontiers in Integrative Neuroscience, 3(26). https://doi.org/10.3389/neuro.07.026.2009

  • Sparing, R., Dafotakis, M., Meister, I. G., Thirugnanasambandam, N., & Fink, G. R. (2008). Enhancing language performance with non-invasive brain stimulation—A transcranial direct current stimulation study in healthy humans. Neuropsychologia, 46(1), 261–268. https://doi.org/10.1016/j.neuropsychologia.2007.07.009

  • Stagg, C. J., & Nitsche, M. A. (2011). Physiological basis of transcranial direct current stimulation. The Neuroscientist, 17(1), 37–53. https://doi.org/10.1177/1073858410386614

  • Steinhauer, K., & Grayhack, J. P. (2000). The role of knowledge of results in performance and learning of a voice motor task. Journal of Voice, 14(2), 137–145. https://doi.org/10.1016/S0892-1997(00)80020-X

  • Summers, J. J., Kang, N., & Cauraugh, J. H. (2016). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Research Reviews, 25, 42–54. https://doi.org/10.1016/j.arr.2015.11.004

  • Tatti, E., Rossi, S., Innocenti, I., Rossi, A., & Santarnecchi, E. (2016). Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Research Reviews, 29, 66–89. https://doi.org/10.1016/j.arr.2016.05.006

  • Tippett, D. C., Niparko, J. K., & Hillis, A. E. (2015). Aphasia. Current Concepts in Theory and Practice, 2(1), 1042.

    Google Scholar 

  • Trost, S., & Gruber, O. (2012). Evidence for a double dissociation of articulatory rehearsal and non-articulatory maintenance of phonological information in human verbal working memory. Neuropsychobiology, 65(3), 133–140. https://doi.org/10.1159/000332335

  • Troyer, A. K., Moscovitch, M., & Winocur, G. (1997). Clustering and switching as two components of verbal fluency: Evidence from younger and older healthy adults. Neuropsychology, 11(1), 138–146. https://doi.org/10.1037//0894-4105.11.1.138

  • Truong, D. Q., Magerowski, G., Blackburn, G. L., Bikson, M., & Alonso-Alonso, M. (2013). Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines. NeuroImage: Clinical, 2, 759–766. https://doi.org/10.1016/j.nicl.2013.05.011

  • Uehara, K., Coxon, J. P., & Byblow, W. D. (2015). Transcranial direct current stimulation improves ipsilateral selective muscle activation in a frequency dependent manner. PLOS ONE, 10(3), e0122434. https://doi.org/10.1371/journal.pone.0122434

  • Van der Merwe, A. (2011). A speech motor learning approach to treating apraxia of speech: Rationale and effects of intervention with an adult with acquired apraxia of speech. Aphasiology, 25(10), 1174–1206.

    Google Scholar 

  • Vannorsdall, T. D., Schretlen, D. J., Andrejczuk, M., Ledoux, K., Bosley, L. V., Weaver, J. R., … Gordon, B. (2012). Altering automatic verbal processes with transcranial direct current stimulation. Frontiers in Psychiatry, 3. https://doi.org/10.3389/fpsyt.2012.00073

  • Vannorsdall, T. D., Van Steenburgh, J. J., Schretlen, D. J., Jayatillake, R., Skolasky, R. L., & Gordon, B. (2016). Reproducibility of tDCS results in a randomized trial: Failure to replicate findings of tDCS-induced enhancement of verbal fluency. Cognitive and Behavioral Neurology, 29(1), 11–17.

    Google Scholar 

  • Vestito, L., Rosellini, S., Mantero, M., & Bandini, F. (2014). Long-term effects of transcranial direct-current stimulation in chronic post-stroke aphasia: A pilot study. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00785

  • Volpato, C., Cavinato, M., Piccione, F., Garzon, M., Meneghello, F., & Birbaumer, N. (2013). Transcranial direct current stimulation (tDCS) of Broca’s area in chronic aphasia: A controlled outcome study. Behavioural Brain Research, 247, 211–216. https://doi.org/10.1016/j.bbr.2013.03.029

  • Vöröslakos, M., Takeuchi, Y., Brinyiczki, K., Zombori, T., Oliva, A., Fernández-Ruiz, A., … Berényi, A. (2018). Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-02928-3

  • Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., & Pascual-Leone, A. (2007). Transcranial direct current stimulation: A computer-based human model study. NeuroImage, 35(3), 1113–1124. https://doi.org/10.1016/j.neuroimage.2007.01.027

  • Wambaugh, J. L., Duffy, J. R., McNeil, M. R., Robin, D. A., & Rogers, M. A. (2006). Treatment guidelines for acquired apraxia of speech: A synthesis and evaluation of the evidence. Journal of Medical Speech-Language Pathology, 14(2), xv–xv.

    Google Scholar 

  • Wambaugh, J. L., & Mauszycki, S. C. (2010). Sound production treatment: Application with severe apraxia of speech. Aphasiology, 24(6–8), 814–825.

    Google Scholar 

  • Wambaugh, J. L., Nessler, C., Cameron, R., & Mauszycki, S. C. (2013). Treatment for acquired apraxia of speech: Examination of treatment intensity and practice schedule. American Journal of Speech-Language Pathology, 22(1), 84–102.

    Google Scholar 

  • Wambaugh, J. L., Nessler, C., Wright, S., & Mauszycki, S. C. (2014). Sound production treatment: Effects of blocked and random practice. American Journal of Speech-Language Pathology, 23(2), S225–S245.

    Google Scholar 

  • Wambaugh, J. L., Nessler, C., Wright, S., Mauszycki, S. C., DeLong, C., Berggren, K., & Bailey, D. J. (2017). Effects of blocked and random practice schedule on outcomes of sound production treatment for acquired apraxia of speech: Results of a group investigation. Journal of Speech, Language, and Hearing Research, 60(6S), 1739–1751.

    Google Scholar 

  • Wambaugh, J. L., Wright, S., Boss, E., Mauszycki, S. C., DeLong, C., Hula, W., & Doyle, P. J. (2018). Effects of treatment intensity on outcomes in acquired apraxia of speech. American Journal of Speech-Language Pathology, 27(1S), 306–322.

    Google Scholar 

  • Westwood, S. J., & Romani, C. (2017). Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: A meta-analysis of single session tDCS applied to healthy participants. Neuropsychologia, 104, 234–249. https://doi.org/10.1016/j.neuropsychologia.2017.07.031

  • Whitfield, J. A., & Goberman, A. M. (2017). Speech motor sequence learning: Acquisition and retention in parkinson disease and normal aging. Journal of Speech, Language, and Hearing Research, 60(6), 1477–1492. https://doi.org/10.1044/2016_JSLHR-S-16-0104

  • Wierenga, C. E., Benjamin, M., Gopinath, K., Perlstein, W. M., Leonard, C. M., Rothi, L. J. G., … Crosson, B. (2008). Age-related changes in word retrieval: Role of bilateral frontal and subcortical networks. Neurobiology of Aging, 29(3), 436–451. https://doi.org/10.1016/j.neurobiolaging.2006.10.024

  • Wiethoff, S., Hamada, M., & Rothwell, J. C. (2014). Variability in response to transcranial direct current stimulation of the motor cortex. Brain Stimulation, 7(3), 468–475. https://doi.org/10.1016/j.brs.2014.02.003

  • Willems, R. M., & Hagoort, P. (2007). Neural evidence for the interplay between language, gesture, and action: A review. Brain and Language, 101(3), 278–289. https://doi.org/10.1016/j.bandl.2007.03.004

  • Wilssens, I., Vandenborre, D., van Dun, K., Verhoeven, J., Visch-Brink, E., & Mariën, P. (2015). Constraint-Induced aphasia therapy versus intensive semantic treatment in fluent aphasia. American Journal of Speech-Language Pathology, 24(2), 281. https://doi.org/10.1044/2015_AJSLP-14-0018

  • Wirth, M., Rahman, R. A., Kuenecke, J., Koenig, T., Horn, H., Sommer, W., & Dierks, T. (2011). Effects of transcranial direct current stimulation (tDCS) on behaviour and electrophysiology of language production. Neuropsychologia, 49(14), 3989–3998. https://doi.org/10.1016/j.neuropsychologia.2011.10.015

  • Wong, A. W.-K., Whitehill, T. L., Ma, E. P.-M., & Masters, R. (2013). Effects of practice schedules on speech motor learning. International Journal of Speech-Language Pathology, 15(5), 511–523. https://doi.org/10.3109/17549507.2012.761282

  • Wong, M. N., Chan, Y., Ng, M. L., & Zhu, F. F. (2019). Effects of transcranial direct current stimulation over the Broca’s area on tongue twister production. International Journal of Speech-Language Pathology, 21(2), 182–188.

    Google Scholar 

  • Yang, F. G., Fuller, J., Khodaparast, N., & Krawczyk, D. C. (2010). Figurative language processing after traumatic brain injury in adults: A preliminary study. Neuropsychologia, 48(7), 1923–1929.

    Google Scholar 

  • Ziegler, W. (2003). Speech motor control is task-specific: Evidence from dysarthria and apraxia of speech. Aphasiology, 17(1), 3–36.

    Google Scholar 

Further Reading

  • Biou, E., Cassoudesalle, H., Cogné, M., Sibon, I., De Gabory, I., Dehail, P., … Glize, B. (2019). Transcranial direct current stimulation in post-stroke aphasia rehabilitation: A systematic review. Annals of Physical and Rehabilitation Medicine, 62(2), 104–121.

    Google Scholar 

  • de Aguiar, V., Paolazzi, C. L., & Miceli, G. (2015). tDCS in post-stroke aphasia: The role of stimulation parameters, behavioral treatment and patient characteristics. Cortex, 63, 296–316. https://doi.org/10.1016/j.cortex.2014.08.015

  • Monti, A., Ferrucci, R., Fumagalli, M., Mameli, F., Cogiamanian, F., Ardolino, G., & Priori, A. (2013). Transcranial direct current stimulation (tDCS) and language. Journal of Neurology, Neurosurgery & Psychiatry, 84(8), 832–842. https://doi.org/10.1136/jnnp-2012-302825

  • Sandars, M., Cloutman, L., & Woollams, A. M. (2016). Taking sides: An integrative review of the impact of laterality and polarity on efficacy of therapeutic transcranial direct current stimulation for anomia in chronic poststroke aphasia. Neural Plasticity, 2016(8428256). https://doi.org/10.1155/2016/8428256

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vandenborre, D., Wilssens, I., van Dun, K., Manto, M. (2020). Transcranial Direct Current Stimulation (tDCS) and Language/Speech: Can Patients Benefit from a Combined Therapeutic Approach?. In: Argyropoulos, G.P.D. (eds) Translational Neuroscience of Speech and Language Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-35687-3_6

Download citation

Publish with us

Policies and ethics