Abstract
Slate stands out from other stones due to its pronounced anisotropy, affecting more or less intensely all properties of the slate. The anisotropy is caused by the cleavage plane which is composed of mica layers and thus, highly depends on the mineralogical composition and the fabric of a slate. Both, mineralogy and the fabric govern the overall character of a slate and are therefore thoroughly explained. Since not only slate in strict sense is used for roofing, the different and relevant fissile stone types are shortly introduced. In this chapter, the rock-mechanical properties of slate are described, considering especially the dependence of the different strength values in respect to the orientation to the cleavage plane. Emphasis is put on the bending strength since it is the most important and only required strength parameter for roofing slate. Other strength parameter like the compressive strength or the Young’s modulus are important in respect to safety calculations during mining. The physical properties of slate comprise hardness and abrasion, fissility, density and porosity, thermal conductivity and thermal expansion as well as hydric and hygric properties. The optical parameter includes colours and the identification of the different splitting surfaces of slates which give slate a distinct appearance. Furthermore, this chapter includes various data from own investigations and from other published research to provide a comprehensive overview of the different slate properties and to enable the reader to work with it.
This is a preview of subscription content, access via your institution.
Buying options




















Source Peschel (1977), slate: compiled from certificates of slate producers according to the EN 12326


Source US slates from Kessler and Sligh (1932); others: Wichert and compiled from certificates according to the EN 12326




Data Braun (2013)


Source Dinh (2011)

Source Dinh (2011)

Source Dinh (2011)



Data Scotland from Walsh (2002)


After Fischer and Koch (2005), for explanation see text



Data from Siegesmund and Dürrast (2014)








Source other stones Siegesmund and Dürrast (2014)
References
Alam MR, Swamidas ASJ, Gale J, Munaswamy K (2008) Mechanical and physical properties of slate from Britannia Cove, Newfoundland. Can J Civ Eng 35:751–755
Alexandrov KS, Ryzhova TV (1961) The elastic properties of crystals. Sov Phys Crystallogr 6:228–252
ASTM (1999) ASTM C 121-90-standard test method for water absorption of slate. 2
ASTM (2004) ASTM C119-04-standard terminology relating to dimension stone. 6
Attewell PB, Sandford MR (1974) Intrinsic shear strength of a brittle, anisotropic rock—I, II, III. Int J Rock Mech Mining Sci Geomech Abst 11:25
Baum M (1994) Petrographische und strukturelle Untersuchungen an Dachschiefern von Lagerstätten im Unternehmensbereich der Vereinigten Thüringer Schiefergruben GmbH (II)-im Vergleich mit Dachschiefern aus europäischen Lagerstättenprovinzen. Diploma thesis (unpub.),
Bodensteiner S (2008) Standsicherheitsberechnungen im Bergwerk Katzenberg.
Braun J (2013) Geomechanische Untersuchungen von Dachschiefer aus dem Sauerland. Diploma thesis (unpub.), p 110
BS 680 (1971) Specification for roofing slates. Metric units, p 16
BS-EN (2002) BS EN 12326-1:2002—slate and stone products for discontinuous roofing and cladding—Part 1: Product specification, p 37
Cárdenes V, Rubio-Ordoñez A, de la López-Munguira A, Horra R, Monterroso C, Paradelo R, Calleja L (2010) Mineralogy and modulus of rupture of roofing slate: applications in the prospection and quarrying of slate deposits. Eng Geol 114:191–197
Caslavsky JL, Vedam K (1970) Muscovites with isotropic and anisotropic elasticity in the basal plane. Am Mineral 55:1633–1638
Cowie JW (1992) Cambrian. In: Duff PMLD, Smith AJ (1992) Geology of England and Wales. Geological Society of London, pp 35–61
De Quervain F (1967) Technische Gesteinskunde. Birkhäuser, Basel
DIN-EN (2014) DIN EN 12326-1:2014 - Schiefer und andere Natursteinprodukte für überlappende Dachdeckungen und Außenwandbekleidungen Teil 1: Produktspezifikation. 48
Dinh QD (2011) Brazilian test on anisotropic rocks—Laboratory experiment, numerical simulation and interpretation. Ph.D. thesis, TU Bergakademie Freiberg
Donath FA (1961) Experimental study of shear failure in anisotropic rocks. Geol Soc Amer Bull 72:985–989
Fischer C, Koch A (2005) Development of porosity in a black roofing slate during oxidative weathering. Z dt Ges Geowiss 156:75–79
Garcia-Guinea J, Lombardero M, Roberts B, Peto A (1998) Mineralogy and microstructure of roofing slate: thermo-optical behaviour and fissility. Materiales de Construcción 48:37–48
Gómez-Fernández F, Castañón AM, Ward CR (2012) Analysis of the methodology of the petrographic examination test (European Standard EN 12326-2) and the relation between petrography and modulus of rupture for Spanish roofing slates. Eng Geol 141–142:114–123
Gregor M (2009) Bridlica-čierny mramor v strednej Európe. In: Král J (ed) Splok Permon Marianka, Marianka, pp 37–39
Heiß K (1993) Lagerstättenkundliche Übersichtsuntersuchung und materialkundliche Charakterisierung der westfälischen Schiefergruben zur Entwicklung eines materialkundlichen Anforderungsprofils. Unpublished report, p 213
Hoigard KR, Scheffler MJ (2007) Dimension stone use in building construction. ASTM International
IUPAC (1994) Reporting physisorption data for gas/solid systems. Pure Appl Chem 66:1739–1758
Kessler DW, Sligh WH (1932) Physical properties and weathering characteristics of slate. Bur Stand J Res 9:377–411
Klopfer H (1974) Wassertransport durch Diffusion in Feststoffen. Bauverlag, Wiesbaden
Klopfer H (2008) Feuchte. In: Lutz P, Jenisch R, Klopfer H, Freymuth H, Petzold K, Stohrer M (eds) Lehrbuch der Bauphysik: Schall - Wärme - Feuchte - Licht - Brand - Klima. Vieweg+Teubner Verlag, Stuttgart, pp 329–472
Künzel HM (1995) Simultaneous heat and moisture transport in building components. Dr. thesis, Frauenhofer Institute
Langheinrich G (1983) Wärmeleitfähigkeiten anisotroper Gesteine. Geol Rundsch 72:541–588
Lombardero M, Toyos JM (1995) Prospección y valoración de yacimientos de pizarras para cubiertas. Ingeopres 29:19–26
McNeil LE, Grimsditch M (1993) Elastic moduli of muscovite mica. J Phys Condens Matter 5:1681–1690
Morales-Demarco M et al (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63:1879–1909
Passchier CWT, Trouw RAJ (2005) Microtectonics. Springer, Heidelberg
Peschel A (1977) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig
Pires V, Amaral PM, Rosa LG, Camposinhos RS (2011) Slate flexural and anchorage strength considerations in cladding design. Constr Build Mater 25:3966–3971
Ramamurthy T (1993) Strength and modulus responses of anisotropic rocks. In: Comprehensive rock engineering, pp 313–329
Rodríguez-Sastre MA, Gutiérrez-Claverol M, Torres-Alonso M (2008) Relationship between cleavage orientation, uniaxial compressive strength and Young’s modulus for slates in NW Spain. Bull Eng Geol Env 67:181–186
Rybařík V (1992) Železnnobrodská břidlice. Geologickýn Průzkum 34:166–169
Sabatakakis N, Tsiambaos G (1983) Anisotropy of Central Macedonia Phyllite and its effect on the uniaxial compressive strength. Bull Publ Works Res Center 1–2:26–32
Saroglou H, Tsiambos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234
Schubert R, Steiner W (1970) Der Thüringische Dachschiefer als Werk- und Dekorationsstein. Wiss. Zeitschrift der Hochschule für Architektur und Bauwesen Weimar, 17, 20
Teuscher EO (1935) Bericht über die Befahrung der Lößnitzer Schieferbrüche. Internal report, unpub., 51
Tomlinson CW (1916) The origin of red beds: a study of the conditions of origin of the permo-carboniferous and triassic red beds of the western United States. J Geol 24:153–179
Vulpius B (1993) Gefügestudien an unterkarbonen Dachschiefern im Gebiet der Frankenwälder Querzone. Diploma thesis (unpub.)
Walsh JA (2008) Modelling the physical and chemical changes in roofing slate caused by weathering processes. Environ Geol 56:561–569
Walsh JA (2002) Scottish roofing slate: characteristics and tests. bcin.ca
Wittmann F, Prim P (1983) Mesures de l’effet consolidant d’un produit de traitement. Matériaux et Constructions 16:235–242
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Wichert, J. (2020). Properties of Slate. In: Slate as Dimension Stone. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-35667-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-35667-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35666-8
Online ISBN: 978-3-030-35667-5
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)