Skip to main content

Properties of Slate

  • Chapter
  • First Online:
Slate as Dimension Stone

Part of the book series: Springer Mineralogy ((MINERAL))

Abstract

Slate stands out from other stones due to its pronounced anisotropy, affecting more or less intensely all properties of the slate. The anisotropy is caused by the cleavage plane which is composed of mica layers and thus, highly depends on the mineralogical composition and the fabric of a slate. Both, mineralogy and the fabric govern the overall character of a slate and are therefore thoroughly explained. Since not only slate in strict sense is used for roofing, the different and relevant fissile stone types are shortly introduced. In this chapter, the rock-mechanical properties of slate are described, considering especially the dependence of the different strength values in respect to the orientation to the cleavage plane. Emphasis is put on the bending strength since it is the most important and only required strength parameter for roofing slate. Other strength parameter like the compressive strength or the Young’s modulus are important in respect to safety calculations during mining. The physical properties of slate comprise hardness and abrasion, fissility, density and porosity, thermal conductivity and thermal expansion as well as hydric and hygric properties. The optical parameter includes colours and the identification of the different splitting surfaces of slates which give slate a distinct appearance. Furthermore, this chapter includes various data from own investigations and from other published research to provide a comprehensive overview of the different slate properties and to enable the reader to work with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam MR, Swamidas ASJ, Gale J, Munaswamy K (2008) Mechanical and physical properties of slate from Britannia Cove, Newfoundland. Can J Civ Eng 35:751–755

    Article  Google Scholar 

  • Alexandrov KS, Ryzhova TV (1961) The elastic properties of crystals. Sov Phys Crystallogr 6:228–252

    Google Scholar 

  • ASTM (1999) ASTM C 121-90-standard test method for water absorption of slate. 2

    Google Scholar 

  • ASTM (2004) ASTM C119-04-standard terminology relating to dimension stone. 6

    Google Scholar 

  • Attewell PB, Sandford MR (1974) Intrinsic shear strength of a brittle, anisotropic rock—I, II, III. Int J Rock Mech Mining Sci Geomech Abst 11:25

    Google Scholar 

  • Baum M (1994) Petrographische und strukturelle Untersuchungen an Dachschiefern von Lagerstätten im Unternehmensbereich der Vereinigten Thüringer Schiefergruben GmbH (II)-im Vergleich mit Dachschiefern aus europäischen Lagerstättenprovinzen. Diploma thesis (unpub.),

    Google Scholar 

  • Bodensteiner S (2008) Standsicherheitsberechnungen im Bergwerk Katzenberg.

    Google Scholar 

  • Braun J (2013) Geomechanische Untersuchungen von Dachschiefer aus dem Sauerland. Diploma thesis (unpub.), p 110

    Google Scholar 

  • BS 680 (1971) Specification for roofing slates. Metric units, p 16

    Google Scholar 

  • BS-EN (2002) BS EN 12326-1:2002—slate and stone products for discontinuous roofing and cladding—Part 1: Product specification, p 37

    Google Scholar 

  • Cárdenes V, Rubio-Ordoñez A, de la López-Munguira A, Horra R, Monterroso C, Paradelo R, Calleja L (2010) Mineralogy and modulus of rupture of roofing slate: applications in the prospection and quarrying of slate deposits. Eng Geol 114:191–197

    Article  Google Scholar 

  • Caslavsky JL, Vedam K (1970) Muscovites with isotropic and anisotropic elasticity in the basal plane. Am Mineral 55:1633–1638

    Google Scholar 

  • Cowie JW (1992) Cambrian. In: Duff PMLD, Smith AJ (1992) Geology of England and Wales. Geological Society of London, pp 35–61

    Google Scholar 

  • De Quervain F (1967) Technische Gesteinskunde. Birkhäuser, Basel

    Book  Google Scholar 

  • DIN-EN (2014) DIN EN 12326-1:2014 - Schiefer und andere Natursteinprodukte für überlappende Dachdeckungen und Außenwandbekleidungen Teil 1: Produktspezifikation. 48

    Google Scholar 

  • Dinh QD (2011) Brazilian test on anisotropic rocks—Laboratory experiment, numerical simulation and interpretation. Ph.D. thesis, TU Bergakademie Freiberg

    Google Scholar 

  • Donath FA (1961) Experimental study of shear failure in anisotropic rocks. Geol Soc Amer Bull 72:985–989

    Article  Google Scholar 

  • Fischer C, Koch A (2005) Development of porosity in a black roofing slate during oxidative weathering. Z dt Ges Geowiss 156:75–79

    Google Scholar 

  • Garcia-Guinea J, Lombardero M, Roberts B, Peto A (1998) Mineralogy and microstructure of roofing slate: thermo-optical behaviour and fissility. Materiales de Construcción 48:37–48

    Article  Google Scholar 

  • Gómez-Fernández F, Castañón AM, Ward CR (2012) Analysis of the methodology of the petrographic examination test (European Standard EN 12326-2) and the relation between petrography and modulus of rupture for Spanish roofing slates. Eng Geol 141–142:114–123

    Article  Google Scholar 

  • Gregor M (2009) Bridlica-čierny mramor v strednej Európe. In: Král J (ed) Splok Permon Marianka, Marianka, pp 37–39

    Google Scholar 

  • Heiß K (1993) Lagerstättenkundliche Übersichtsuntersuchung und materialkundliche Charakterisierung der westfälischen Schiefergruben zur Entwicklung eines materialkundlichen Anforderungsprofils. Unpublished report, p 213

    Google Scholar 

  • Hoigard KR, Scheffler MJ (2007) Dimension stone use in building construction. ASTM International

    Google Scholar 

  • IUPAC (1994) Reporting physisorption data for gas/solid systems. Pure Appl Chem 66:1739–1758

    Article  Google Scholar 

  • Kessler DW, Sligh WH (1932) Physical properties and weathering characteristics of slate. Bur Stand J Res 9:377–411

    Article  Google Scholar 

  • Klopfer H (1974) Wassertransport durch Diffusion in Feststoffen. Bauverlag, Wiesbaden

    Google Scholar 

  • Klopfer H (2008) Feuchte. In: Lutz P, Jenisch R, Klopfer H, Freymuth H, Petzold K, Stohrer M (eds) Lehrbuch der Bauphysik: Schall - Wärme - Feuchte - Licht - Brand - Klima. Vieweg+Teubner Verlag, Stuttgart, pp 329–472

    Google Scholar 

  • Künzel HM (1995) Simultaneous heat and moisture transport in building components. Dr. thesis, Frauenhofer Institute

    Google Scholar 

  • Langheinrich G (1983) Wärmeleitfähigkeiten anisotroper Gesteine. Geol Rundsch 72:541–588

    Article  Google Scholar 

  • Lombardero M, Toyos JM (1995) Prospección y valoración de yacimientos de pizarras para cubiertas. Ingeopres 29:19–26

    Google Scholar 

  • McNeil LE, Grimsditch M (1993) Elastic moduli of muscovite mica. J Phys Condens Matter 5:1681–1690

    Article  Google Scholar 

  • Morales-Demarco M et al (2011) Black dimensional stones: geology, technical properties and deposit characterization of the dolerites from Uruguay. Environ Earth Sci 63:1879–1909

    Article  Google Scholar 

  • Passchier CWT, Trouw RAJ (2005) Microtectonics. Springer, Heidelberg

    Google Scholar 

  • Peschel A (1977) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Pires V, Amaral PM, Rosa LG, Camposinhos RS (2011) Slate flexural and anchorage strength considerations in cladding design. Constr Build Mater 25:3966–3971

    Article  Google Scholar 

  • Ramamurthy T (1993) Strength and modulus responses of anisotropic rocks. In: Comprehensive rock engineering, pp 313–329

    Google Scholar 

  • Rodríguez-Sastre MA, Gutiérrez-Claverol M, Torres-Alonso M (2008) Relationship between cleavage orientation, uniaxial compressive strength and Young’s modulus for slates in NW Spain. Bull Eng Geol Env 67:181–186

    Article  Google Scholar 

  • Rybařík V (1992) Železnnobrodská břidlice. Geologickýn Průzkum 34:166–169

    Google Scholar 

  • Sabatakakis N, Tsiambaos G (1983) Anisotropy of Central Macedonia Phyllite and its effect on the uniaxial compressive strength. Bull Publ Works Res Center 1–2:26–32

    Google Scholar 

  • Saroglou H, Tsiambos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234

    Article  Google Scholar 

  • Schubert R, Steiner W (1970) Der Thüringische Dachschiefer als Werk- und Dekorationsstein. Wiss. Zeitschrift der Hochschule für Architektur und Bauwesen Weimar, 17, 20

    Google Scholar 

  • Teuscher EO (1935) Bericht über die Befahrung der Lößnitzer Schieferbrüche. Internal report, unpub., 51

    Google Scholar 

  • Tomlinson CW (1916) The origin of red beds: a study of the conditions of origin of the permo-carboniferous and triassic red beds of the western United States. J Geol 24:153–179

    Article  Google Scholar 

  • Vulpius B (1993) Gefügestudien an unterkarbonen Dachschiefern im Gebiet der Frankenwälder Querzone. Diploma thesis (unpub.)

    Google Scholar 

  • Walsh JA (2008) Modelling the physical and chemical changes in roofing slate caused by weathering processes. Environ Geol 56:561–569

    Article  Google Scholar 

  • Walsh JA (2002) Scottish roofing slate: characteristics and tests. bcin.ca

    Google Scholar 

  • Wittmann F, Prim P (1983) Mesures de l’effet consolidant d’un produit de traitement. Matériaux et Constructions 16:235–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörn Wichert .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wichert, J. (2020). Properties of Slate. In: Slate as Dimension Stone. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-35667-5_4

Download citation

Publish with us

Policies and ethics