Skip to main content

Optical and Structural Properties of Nitride Based Nanostructures

  • Chapter
  • First Online:
Semiconductor Nanophotonics

Abstract

Advanced characterization methods with nanoscale resolution are powerful tools in order to overcome the continuing challenges in the optimization of nitride semiconductor nanostructures for more efficient nanophotonic devices in the UV and green spectral range. This chapter is devoted to the study of optical, electronic, and structural properties of these nitride based nanostructures. In the first part, we discuss several state-of-the-art nanoscale characterization techniques including scanning transmission electron microscopy cathodoluminescence (STEM-CL), tip-enhanced Raman spectroscopy (TERS), micro-photoluminescence (µPL), X-ray diffraction (XRD), and scanning tunneling microscopy and spectroscopy (STM/STS). This selection of complementary microscopic and spectroscopic techniques provides unique insights into a multitude of nanostructure properties such as charge carrier excitation, relaxation, diffusion, and recombination dynamics, vibrational and structural properties including strain, segregation, as well as clustering, and surface and interface morphology. In the second part, we apply and combine these techniques to obtain detailed information on nanoscale properties of nitride based micro-columns, quantum wires, and heterostructures. The study of these nitride nanostructures provides not only insight into device limitations, but also contributes to the fundamental understanding of structural and optical properties of III-nitride nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Until the completion of this publication.

  2. 2.

    The sample was grown at CEA Grenoble at the Institut Nanosciences et Cryogénie in the group of Eva Monroy by Aparna Das.

  3. 3.

    At 80 kV acceleration voltage and acceptance angle of 5 mrad.

  4. 4.

    5000 trajectories were simulated with the Monte-Carlo simulation software CASINO v2.48. An incident electron probe of 0.56 nm in diameter was chosen.

  5. 5.

    The presented HAADF measurements were performed by Florian Krause in the group of Prof. Andreas Rosenauer (University of Bremen).

References

  1. Y. Arakawa, H. Sakaki, Appl. Phys. Lett. 40, 939 (1982)

    Article  ADS  Google Scholar 

  2. H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980)

    Article  ADS  Google Scholar 

  3. Y. Arakawa, A. Yariv, IEEE J. Quantum Electron. QE-22, 1887 (1986)

    Article  ADS  Google Scholar 

  4. A. Yariv, Appl. Phys. Lett. 53, 1033 (1988)

    Article  ADS  Google Scholar 

  5. S.J. Pennycook, A. Howie, Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 41(6), 809 (1980)

    ADS  Google Scholar 

  6. P.M. Petroff, R.A. Logan, A. Savage, J. Microsc. 118(3), 255 (1980)

    Article  Google Scholar 

  7. S.H. Roberts, J.W. Steeds, J. Cryst. Growth 59(1–2), 312 (1982)

    Article  ADS  Google Scholar 

  8. N. Yamamoto, J.C.H. Spence, D. Fathy, Philos. Mag. B Phys. Condens. Matter Stat. Mech. Electron. Opt. Magn. Prop. 49(6), 609–629 (1984)

    ADS  Google Scholar 

  9. T. Mitsui, N. Yamamoto, K. Takemoto, O. Nittono, Jpn. J. Appl. Phys. 33(3), L342 (1994)

    Article  ADS  Google Scholar 

  10. X.H. Wu, C.R. Elsass, A. Abare, M. MacK, S. Keller, P.M. Petroff, S.P. Denbaars, J.S. Speck, S.J. Rosner, Appl. Phys. Lett. 72(6), 692 (1998)

    Article  ADS  Google Scholar 

  11. R. Gómez-Medina, N. Yamamoto, M. Nakano, F.J.G. De Abajo, New J. Phys. 10, 105009 (2008)

    Article  ADS  Google Scholar 

  12. S.K. Lim, M. Brewster, F. Qian, Y. Li, C.M. Lieber, S. Gradečak, Nano Lett. 9(11), 3940 (2009)

    Article  ADS  Google Scholar 

  13. L.F. Zagonel, S. Mazzucco, M. Tence, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F.H. Julien, R. Songmuang, M. Kociak, Nano Lett. 11(2), 568 (2011)

    Article  ADS  Google Scholar 

  14. J.T. Griffiths, S. Zhang, B. Rouet-Leduc, W.Y. Fu, A. Bao, D. Zhu, D.J. Wallis, A. Howkins, I. Boyd, D. Stowe, M.J. Kappers, C.J. Humphreys, R.A. Oliver, Nano Lett. 15(11), 7639 (2015)

    Article  ADS  Google Scholar 

  15. M. Kociak, L.F. Zagonel, Ultramicroscopy 176, 112 (2017)

    Article  Google Scholar 

  16. H.P. Strunk, M. Albrecht, H. Scheel, J. Microsc. 224(1), 79 (2006)

    Article  MathSciNet  Google Scholar 

  17. J.I. Deitz, A.T.M.G. Sarwar, S.D. Carnevale, T.J. Grassman, R.C. Myers, D.W. McComb, Microsc. Microanal. 24(2), 93 (2018)

    Article  ADS  Google Scholar 

  18. M. von Ardenne, Das Elektronen-Rastermikroskop. Theoretische Grundlagen. Z. Phys. 109(9–10), 553–572 (1938)

    Article  ADS  Google Scholar 

  19. M. von Ardenne, Das Elektronen-Rastermikroskop. Praktische Ausführung. Z. Tech. Phys. 19, 407–416 (1938)

    Google Scholar 

  20. G. Schmidt, Optische Nanocharakterisierung GaN-basierter Quantenstrukturen für Mikrokavitäten. Doctoral thesis, Otto-von-Guericke-University Magdeburg, Magdeburg, 2017

    Google Scholar 

  21. J.I. Goldstein, J.L. Costley, G.W. Lorimer, R.J.B. Reed, Scan. Electron Microsc. 1, 315 (1977)

    Google Scholar 

  22. L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation. 36 of Springer Series in Optical Sciences, 5th edn. (Springer, New York, 2008)

    Google Scholar 

  23. D.B. Williams, C.B. Carter, J.C.H. Spence, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd edn. (Springer, New York, 2009)

    Google Scholar 

  24. S.J. Pennycook, P.D. Nellist, Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer, New York, 2011)

    Book  Google Scholar 

  25. J. Cowley, Y. Huang, Ultramicroscopy 40(2), 171 (1992)

    Article  Google Scholar 

  26. M. Noltemeyer, F. Bertram, T. Hempel, B. Bastek, J. Christen, M. Brandt, M. Lorenz, M. Grundmann, F.H. Teherani, D.C. Look, D.J. Rogers, in SPIE OPTO, SPIE Proceedings (SPIE, 2012), p. 82630X

    Google Scholar 

  27. A.N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, M.A. Stepovich, Bull. Russ. Acad. Sci. Phys. 76(9), 970 (2012)

    Article  Google Scholar 

  28. A.N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, M.A. Stepovich, J. Surf. Invest. X-ray Synchrotron Neutron Tech. 6(6), 901 (2012)

    Article  Google Scholar 

  29. M. Noltemeyer, Dissertation, Otto-von-Guericke-Universität Magdeburg, Magdeburg, 2016

    Google Scholar 

  30. T. Malis, S.C. Cheng, R.F. Egerton, J. Electron Microsc. Tech. 8(2), 193–200 (1988)

    Article  Google Scholar 

  31. T. Kobayashi, T. Sugita, M. Koyama, S.-I. Takayanagi, IEEE Trans. Nucl. Sci. 19(3), 324–333 (1972)

    Article  ADS  Google Scholar 

  32. R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (Springer, US, Boston and MA, 2011)

    Book  Google Scholar 

  33. P. Perlin et al., Investigation of longitudinal-optical phonon-plasmon coupled modes in highly conducting bulk GaN. Appl. Phys. Lett. 67(17), 2524–2526 (1995)

    Article  ADS  Google Scholar 

  34. V.Y. Davydov et al., Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58(19), 12899–12907 (1998)

    Article  ADS  Google Scholar 

  35. H. Harima, Properties of GaN and related compounds studied by means of Raman scattering. J. Phys. Condens. Matter 14(38), R967–R993 (2002)

    ADS  Google Scholar 

  36. R. Kirste, S. Mohn, M.R. Wagner, J.S. Reparaz, A. Hoffmann, Phonon plasmon interaction in ternary group-III-nitrides. Appl. Phys. Lett. 101(4), 041909 (2012)

    Article  ADS  Google Scholar 

  37. R. Kirste et al., Compensation effects in GaN: Mg probed by Raman spectroscopy and photoluminescence measurements. J. Appl. Phys. 113(10), 103504 (2013)

    Article  ADS  Google Scholar 

  38. J.S. Reparaz et al., A novel contactless technique for thermal field mapping and thermal conductivity determination: two-laser Raman thermometry. Rev. Sci. Instrum. 85(3), 034901 (2014)

    Article  ADS  Google Scholar 

  39. Z. Zhang, S. Sheng, R. Wang, M. Sun, Tip-enhanced Raman spectroscopy. Anal. Chem. 88(19), 9328–9346 (2016)

    Article  Google Scholar 

  40. E. Poliani et al., Breakdown of far-field raman selection rules by light-plasmon coupling demonstrated by tip-enhanced raman scattering. J. Phys. Chem. Lett. 8(22), 5462–5471 (2017)

    Article  Google Scholar 

  41. R.V. Maximiano, R. Beams, L. Novotny, A. Jorio, L.G. Cançado, Mechanism of near-field Raman enhancement in two-dimensional systems. Phys. Rev. B Condens. Matter Mater. Phys. 85(23), 235434 (2012)

    Google Scholar 

  42. A. Hartschuh, Tip-enhanced near-field optical microscopy, in Handbook of Spectroscopy, 2nd enlarged edn., vol 4, no 43 (2014), pp. 1585–1610

    Chapter  Google Scholar 

  43. M.K. Schmidt, R. Esteban, A. González-Tudela, G. Giedke, J. Aizpurua, Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10(6), 6291–6298 (2016)

    Article  Google Scholar 

  44. N.S. Mueller, S. Heeg, S. Reich, Surface-enhanced Raman scattering as a higher-order Raman process. Phys. Rev. A 94(2), 023813 (2016)

    Article  ADS  Google Scholar 

  45. Y. Saito, M. Motohashi, N. Hayazawa, S. Kawata, Stress imagining of semiconductor surface by tip-enhanced Raman spectroscopy. J. Microsc. 229(2), 217–222 (2008)

    Article  MathSciNet  Google Scholar 

  46. N. Lee et al., High contrast scanning nano-Raman spectroscopy of silicon. J. Raman Spectrosc. 38(6), 789–796 (2007)

    Article  ADS  Google Scholar 

  47. R. Matsui, P. Verma, T. Ichimura, Y. Inouye, S. Kawata, Nanoanalysis of crystalline properties of GaN thin film using tip-enhanced Raman spectroscopy. Appl. Phys. Lett. 90(6), 061906 (2007)

    Article  ADS  Google Scholar 

  48. S. Berweger, C.C. Neacsu, Y. Mao, H. Zhou, S.S. Wong, M.B. Raschke, Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4(8), 496–499 (2009)

    Article  ADS  Google Scholar 

  49. J. Chen et al., Probing strain in bent semiconductor nanowires with raman spectroscopy. Nano Lett. 10(4), 1280–1286 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  50. N. Marquestaut, D. Talaga, L. Servant, P. Yang, P. Pauzauskie, F. Lagugné-Labarthet, Imaging of single GaN nanowires by tip-enhanced Raman spectroscopy. J. Raman Spectrosc. 40(10), 1441–1445 (2009)

    Article  ADS  Google Scholar 

  51. P.G. Gucciardi, J.C. Valmalette, Different longitudinal optical-transverse optical mode amplification in tip enhanced Raman spectroscopy of GaAs(001). Appl. Phys. Lett. 97(26), 263104 (2010)

    Article  ADS  Google Scholar 

  52. Y. Ogawa, Y. Yuasa, F. Minami, S. Oda, Tip-enhanced Raman mapping of a single Ge nanowire. Appl. Phys. Lett. 99(5), 2–5 (2011)

    Article  Google Scholar 

  53. Y. Ogawa, T. Toizumi, F. Minami, A.V. Baranov, Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope. Phys. Rev. B Condens. Matter Mater. Phys. 83(8), 081302 (2011)

    Google Scholar 

  54. J.S. Reparaz et al., Probing local strain and composition in Ge nanowires by means of tip-enhanced Raman scattering. Nanotechnology 24(18), 185704 (2013)

    Article  ADS  Google Scholar 

  55. E. Poliani et al., Nanoscale imaging of InN segregation and polymorphism in single vertically aligned InGaN/GaN multi quantum well nanorods by tip-enhanced Raman scattering. Nano Lett. 13(7), 3205–3212 (2013)

    Article  ADS  Google Scholar 

  56. H. Rohrer, G. Binnig, Helv. Phys. Acta 55(6), 726 (1982)

    Google Scholar 

  57. G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 (1982)

    Article  ADS  Google Scholar 

  58. A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, J. Vac. Sci. Technol. B 16(4), 2242 (1998)

    Article  Google Scholar 

  59. R. Held, G. Nowak, B.E. Ishaug, S.M. Seutter, A. Parkhomovsky, A.M. Dabrian, P.I. Cohen, I. Grzegory, S. Porowski, J. Appl. Phys. 85, 7697 (1999)

    Article  ADS  Google Scholar 

  60. R.M. Feenstra, P. Mårtensson, Phys. Rev. Lett. 61(4), 447 (1988)

    Article  ADS  Google Scholar 

  61. R.M. Feenstra, Semicond. Sci. Technol. 9(12), 2157 (1994)

    Article  ADS  Google Scholar 

  62. H. Eisele, O. Flebbe, T. Kalka, C. Preinesberger, F. Heinrichsdorff, A. Krost, D. Bimberg, M. Dähne-Prietsch, Appl. Phys. Lett. 75(1), 106 (1999)

    Article  ADS  Google Scholar 

  63. Ch. Schulz, Th. Schmidt, J.I. Flege, N. Berner, Ch. Tessarek, D. Hommel, J. Falta, Phys. Stat. Sol. C 6(2), 305 (2009)

    Google Scholar 

  64. Ch. Schulz, S. Kuhr, H. Geffers, Th. Schmidt, J.I. Flege, T. Aschenbrenner, D. Hommel, J. Falta, J. Vac. Sci. Technol. A 29(1), 11013 (2011)

    Article  Google Scholar 

  65. L.F.J. Piper, T.D. Veal, M. Walker, I. Mahboob, C.F. McConville, H. Lu, W.J. Schaff, J. Vac. Sci. Technol. A 23(4), 617 (2005)

    Google Scholar 

  66. T. Ohashi, Y. Saito, T. Maruyama, Y. Nanishi, J. Cryst. Growth 237–239, 1022 (2002)

    Article  ADS  Google Scholar 

  67. H. Eisele, Ph. Ebert, Phys. Stat. Sol. RRL 6(9–10), 359 (2012)

    Article  Google Scholar 

  68. S. Zhao, S. Fathololoumi, K.H. Bevan, D.P. Liu, M.G. Kibria, Q. Li, G.T. Wang, H. Guo, Z. Mi, Nano Lett. 12(6), 2877 (2012)

    Article  ADS  Google Scholar 

  69. D. Krüger, S. Kuhr, T. Schmidt, D. Hommel, J. Falta, Phys. Stat. Sol. RRL 3(4), 91 (2009)

    Google Scholar 

  70. L. Ivanova, S. Borisova, H. Eisele, M. Dähne, A. Laubsch, Ph. Ebert, Appl. Phys. Lett. 93(19), 192110 (2008)

    Article  ADS  Google Scholar 

  71. Ph. Ebert, L. Ivanova, S. Borisova, H. Eisele, A. Laubsch, M. Dähne, Appl. Phys. Lett. 94, 062104 (2009)

    Article  ADS  Google Scholar 

  72. H. Eisele, J. Schuppang, M. Schnedler, M. Duchamp, C. Nenstiel, V. Portz, T. Kure, M. Bügler, A. Lenz, M. Dähne, A. Hoffmann, S. Gwo, S. Choi, J.S. Speck, R.E. Dunin-Borkowski, Ph. Ebert, Phys. Rev. B 94(24), 245201 (2016)

    Article  ADS  Google Scholar 

  73. A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F.A. Ponce, J. Christen, A. Krost, Phys. Stat. Sol. C 0(6), 1583 (2003)

    Google Scholar 

  74. Ph. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dähne, Y.-L. Hong, S. Gwo, H. Eisele, Appl. Phys. Lett. 98(6), 062103 (2011)

    Article  ADS  Google Scholar 

  75. L. Lymperakis, P.H. Weidlich, H. Eisele, M. Schnedler, J.-P. Nys, B. Grandidier, D. Stiévenard, R.E. Dunin-Borkowski, J. Neugebauer, Ph. Ebert, Appl. Phys. Lett. 103(15), 152101 (2013)

    Article  ADS  Google Scholar 

  76. M. Franz, S. Appelfeller, H. Eisele, Ph. Ebert, M. Dähne, Phys. Rev. B 99, 195306 (2019)

    Article  ADS  Google Scholar 

  77. M. Schnedler, V. Portz, H. Eisele, R.E. Dunin-Borkowski, Ph. Ebert, Phys. Rev. B 91(20), 205309 (2015)

    Article  ADS  Google Scholar 

  78. M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, K. Kishino, Jpn. J. Appl. Phys. 36(4B), L459 (1997)

    Article  ADS  Google Scholar 

  79. M. Sanchez-Garcia, E. Calleja, E. Monroy, F. Sanchez, F. Calle, E. Munoz, R. Beresford, J. Cryst. Growth 183(1), 23 (1998)

    Article  ADS  Google Scholar 

  80. D. Zubia, S.D. Hersee, J. Appl. Phys. 85(9), 6492 (1999)

    Article  ADS  Google Scholar 

  81. E. Calleja, M.A. Sanchez-Garca, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, K. Ploog, Phys. Rev. B 62, 16826 (2000)

    Article  ADS  Google Scholar 

  82. S.D. Hersee, X. Sun, X. Wang, Nano Lett. 6(8), 1808 (2006)

    Article  ADS  Google Scholar 

  83. C. Nenstiel, M. Bügler, G. Callsen, F. Nippert, T. Kure, S. Fritze, A. Dadgar, H. Witte, J. Bläsing, A. Krost, A. Hoffmann, Phys. Stat. Sol. RRL 9(12), 716 (2015)

    Article  Google Scholar 

  84. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4(5), 89 (1964)

    Article  ADS  Google Scholar 

  85. T. Kuykendall, P. Pauzauskie, S. Lee, Y. Zhang, J. Goldberger, P. Yang, Nano Lett. 3(8), 1063 (2003)

    Article  ADS  Google Scholar 

  86. Q. Li, G.T. Wang, Appl. Phys. Lett. 93(4), 043119 (2008)

    Article  ADS  Google Scholar 

  87. B. Liu, Y. Bando, C. Tang, F. Xu, D. Golberg, Appl. Phys. Lett. 87(7), 073106 (2005)

    Article  ADS  Google Scholar 

  88. M. Müller, Ph.D. thesis, Otto-von-Guericke-University Magdeburg, Germany, 2018

    Google Scholar 

  89. R. Koester, J.S. Hwang, C. Durand, D.L.S. Dang, J. Eymery, Nanotechnology 21(1), 015602 (2010)

    Article  ADS  Google Scholar 

  90. K. Kishino, A. Kikuchi, H. Sekiguchi, S. Ishizawa, in SPIE Conference Proceedings, vol 6473 (2007), p. 64730T

    Google Scholar 

  91. A.-L. Bavencove, G. Tourbot, J. Garcia, Y. Desieres, P. Gilet, F. Levy, B. Andre, B. Gayral, B. Daudin, L.S. Dang, Nanotechnology 22(34), 345705 (2011)

    Article  ADS  Google Scholar 

  92. S. Krylyuk, D. Paramanik, M. King, A. Motayed, J.-Y. Ha, J.E. Bonevich, A. Talin, A.V. Davydov, Appl. Phys. Lett. 101(24), 241119 (2012)

    Article  ADS  Google Scholar 

  93. P. Shields, M. Hugues, J. Zuniga-Perez, M. Cooke, M. Dineen, W. Wang, F. Causa, D. Allsopp, Phys. Stat. Sol. (c) 9(3–4), 631 (2012)

    Google Scholar 

  94. C.-Y. Wang, L.-Y. Chen, C.-P. Chen, Y.-W. Cheng, M.-Y. Ke, M.-Y. Hsieh, H.-M. Wu, L.-H. Peng, J. Huang, Opt. Express 16(14), 10549 (2008)

    Article  ADS  Google Scholar 

  95. T. Schimpke, M. Mandl, I. Stoll, B. Pohl-Klein, D. Bichler, F. Zwaschka, J. Strube-Knyrim, B. Huckenbeck, B. Max, M. Müller, P. Veit, F. Bertram, J. Christen, J. Hartmann, A. Waag, H.-J. Lugauer, M. Strassburg, Phys. Stat. Sol. (a) 213(6), 1577 (2016)

    Google Scholar 

  96. K. Kishino, H. Sekiguchi, A. Kikuchi, J. Cryst. Growth 311(7), 2063 (2009)

    Article  ADS  Google Scholar 

  97. A. Urban, J. Malindretos, J.-H. Klein-Wiele, P. Simon, A. Rizzi, New J. Phys. 15(5), 053045 (2013)

    Article  ADS  Google Scholar 

  98. T. Eriksson, K.-D. Lee, B. Heidari, P. Rode, W. Bergbauer, M. Mandl, C. Kolper, M. Strassburg, in SPIE Conference Proceedings, vol 7970 (2011), p. 797015

    Google Scholar 

  99. C.-H. Liao, W.-M. Chang, H.-S. Chen, C.-Y. Chen, Y.-F. Yao, H.-T. Chen, C.-Y. Su, S.-Y. Ting, Y.-W. Kiang, C.C. Yang, Opt. Express 20(14), 15859 (2012)

    Article  ADS  Google Scholar 

  100. B. Cord, J. Yang, H. Duan, D.C. Joy, J. Klingfus, K.K. Berggren, J. Vac. Sci. Technol. B 27(6), 2616 (2009)

    Article  ADS  Google Scholar 

  101. A.E. Grigorescu, C.W. Hagen, Nanotechnology 20(29), 292001 (2009)

    Article  Google Scholar 

  102. T. Eriksson, S. Yamada, P.V. Krishnan, S. Ramasamy, B. Heidari, Microelectron. Eng. 88, 293 (2011)

    Article  Google Scholar 

  103. K. Kishino, S. Sekiguchi, A. Kikuchi, J. Cryst. Growth 311, 2063 (2009)

    Article  ADS  Google Scholar 

  104. H. Sekiguchi, K. Kishino, A. Kikuchi, Appl. Phys. Express 1, 124002 (2008)

    Article  ADS  Google Scholar 

  105. S. Li, A. Waag, J. Appl. Phys. 111(7), 071101 (2012)

    Article  ADS  Google Scholar 

  106. M. Mandl, X. Wang, T. Schimpke, C. Kölper, M. Binder, J. Ledig, A. Waag, X. Kong, A. Trampert, F. Bertram, J. Christen, F. Barbagini, E. Calleja, M. Strassburg, Phys. Stat. Sol. Rapid Res. Lett. 7(10), 800 (2013)

    Google Scholar 

  107. S. Albert, A.M. Bengoechea-Encabo, F. Barbagini, D. Lopez-Rormero, M.A. Sanchez-Garcia, E. Calleja, P. Lefebvre, X. Kong, U. Jahn, A. Trampert, M. Müller, F. Bertram, G. Schmidt, P. Veit, S. Petzold, J. Christen, P. De Mierry, J. Zuniga-Perez, Int. J. High Speed Electron. Syst. 23(03), 1450020 (2014)

    Article  Google Scholar 

  108. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J.V. Moloney, B. Pasenow, S.W. Koch, Phys. Stat. Sol. (c) 6(S2), 913 (2009)

    Google Scholar 

  109. E. Kioupakis, P. Rinke, K.T. Delaney, C.G.V. deWalle, Appl. Phys. Lett. 98(16), 161107 (2011)

    Article  ADS  Google Scholar 

  110. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, B. Galler, Appl. Phys. Lett. 103(7), 071108 (2013)

    Article  ADS  Google Scholar 

  111. J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013)

    Article  ADS  Google Scholar 

  112. M.S. Mohajerani, S. Khachadorian, T. Schimpke, C. Nenstiel, J. Hartmann, J. Ledig, A. Avramescu, M. Strassburg, A. Homann, A. Waag, Appl. Phys. Lett. 108(9), 091112 (2016)

    Article  ADS  Google Scholar 

  113. M. Müller, P. Veit, F.F. Krause, T. Schimpke, S. Metzner, F. Bertram, T. Mehrtens, K. Muller-Caspary, A. Avramescu, M. Strassburg, A. Rosenauer, J. Christen, Nano Lett. 16(9), 5340 (2016)

    Article  ADS  Google Scholar 

  114. S. Keller, B.P. Keller, D. Kapolnek, A.C. Abare, H. Masui, L.A. Coldren, U.K. Mishra, S.P.D. Baars, Appl. Phys. Lett. 68(22), 3147 (1996)

    Article  ADS  Google Scholar 

  115. T. Schimpke, A. Avramescu, A. Koller, A. Fernando-Saavedra, J. Hartmann, J. Ledig, A. Waag, M. Strassburg, H.-J. Lugauer, J. Cryst. Growth 465, 34 (2017)

    Article  ADS  Google Scholar 

  116. H. Fang, Z.J. Yang, Y. Wang, T. Dai, L.W. Sang, L.B. Zhao, T.J. Yu, G.Y. Zhang, J. Appl. Phys. 103(1), 014908 (2008)

    Article  ADS  Google Scholar 

  117. M. Gibbon, J.P. Stagg, C.G. Cureton, E.J. Thrush, C.J. Jones, R.E. Mallard, R.E. Pritchard, N. Collis, A. Chew, Semicond. Sci. Technol. 8(6), 998 (1993)

    Article  ADS  Google Scholar 

  118. T. Wunderer, M. Feneberg, F. Lipski, J. Wang, R.A.R. Leute, S. Schwaiger, K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, G.J. Beirne, M. Jetter, P. Michler, L. Schade, C. Vierheilig, U.T. Schwarz, A.D. Drager, A. Hangleiter, F. Scholz, Phys. Stat. Sol. (b) 248(3), 549 (2011)

    Google Scholar 

  119. C. Mounir, T. Schimpke, G. Rossbach, A. Avramescu, M. Strassburg, U.T. Schwarz, J. Appl. Phys. 120(15), 155702 (2016)

    Article  ADS  Google Scholar 

  120. T. Nobis, M. Grundmann, Phys. Rev. A 72, 063806 (2005)

    Article  ADS  Google Scholar 

  121. S. Chichibu, K. Wada, S. Nakamura, Appl. Phys. Lett. 71(16), 2346 (1997)

    Article  ADS  Google Scholar 

  122. S. Chichibu, T. Azuhata, T. Sota, S. Nakamura, Appl. Phys. Lett. 69(27), 4188 (1996)

    Article  ADS  Google Scholar 

  123. D.M. Graham, A. Soltani-Vala, P. Dawson, M.J. Godfrey, T.M. Smeeton, J.S. Barnard, M.J. Kappers, C.J. Humphreys, E.J. Thrush, J. Appl. Phys. 97(10), 103508 (2005)

    Article  ADS  Google Scholar 

  124. M.J. Galtrey, R.A. Oliver, M.J. Kappers, C.J. Humphreys, P.H. Clifton, D. Larson, D.W. Saxey, A. Cerezo, J. Appl. Phys. 104(1), 013524 (2008)

    Article  ADS  Google Scholar 

  125. D. Watson-Parris, M.J. Godfrey, P. Dawson, R.A. Oliver, M.J. Galtrey, M.J. Kappers, C.J. Humphreys, Phys. Rev. B 83, 115321 (2011)

    Article  ADS  Google Scholar 

  126. S. Schulz, D.P. Tanner, E.P. O’Reilly, M.A. Caro, T.L. Martin, P.A.J. Bagot, M.P. Moody, F. Tang, J.T. Griths, F. Oehler, M.J. Kappers, R.A. Oliver, C.J. Humphreys, D. Sutherland, M.J. Davies, P. Dawson, Phys. Rev. B 92, 235419 (2015)

    Article  ADS  Google Scholar 

  127. L. Bellaiche, T. Mattila, L.-W. Wang, S.-H. Wei, A. Zunger, Appl. Phys. Lett. 74(13), 1842 (1999)

    Article  ADS  Google Scholar 

  128. L.-W. Wang, Phys. Rev. 63, 245107 (2001)

    Article  Google Scholar 

  129. S.F. Chichibu, A. Uedono, T. Onuma, B.A. Haskell, A. Chakraborty, T. Koyama, P.T. Fini, S. Keller, S.P. DenBaars, J.S. Speck, U.K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, T. Sota, Nat. Mater. 5(10), 810 (2006)

    Article  ADS  Google Scholar 

  130. Y.-R. Wu, R. Shivaraman, K.-C. Wang, J.S. Speck, Appl. Phys. Lett. 101(8), 083505 (2012)

    Article  ADS  Google Scholar 

  131. C. Humphreys, J. Griths, F. Tang, F. Oehler, S. Findlay, C. Zheng, J. Etheridge, T. Martin, P. Bagot, M. Moody, D. Sutherland, P. Dawson, S. Schulz, S. Zhang, W. Fu, T. Zhu, M. Kappers, R. Oliver, Ultramicroscopy 176, 93 (2017)

    Article  Google Scholar 

  132. T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers, C.J. Humphreys, Appl. Phys. Lett. 83(26), 5419 (2003)

    Article  ADS  Google Scholar 

  133. T. Li, E. Hahn, D. Gerthsen, A. Rosenauer, A. Strittmatter, L. Reißmann, D. Bimberg, Appl. Phys. Lett. 86(24), 241911 (2005)

    Article  ADS  Google Scholar 

  134. A. Rosenauer, T. Mehrtens, K. Müller, K. Gries, M. Schowalter, P.V. Satyam, S. Bley, C. Tessarek, D. Hommel, K. Sebald, M. Seyfried, J. Gutowski, A. Avramescu, K. Engl, S. Lutgen, Ultramicroscopy 111(8), 1316 (2011)

    Article  Google Scholar 

  135. F.F. Krause, J.-P. Ahl, D. Tytko, P.-P. Choi, R. Egoavil, M. Schowalter, T. Mehrtens, K. Müller-Caspary, J. Verbeeck, D. Raabe, J. Hertkorn, K. Engl, A. Rosenauer, Ultramicroscopy 156, 29 (2015)

    Article  Google Scholar 

  136. T. Bartel, C. Kisielowski, Ultramicroscopy 108(11), 1420 (2008)

    Article  Google Scholar 

  137. H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, F. Scholz, Phys. Rev. B 92, 106802 (2004)

    Google Scholar 

  138. A. Bell, J. Christen, F. Bertram, F.A. Ponce, H. Marui, S. Tanaka, Appl. Phys. Lett. 84(1) (2004)

    Article  ADS  Google Scholar 

  139. S. Marcinkevicius, K.M. Kelchner, S. Nakamura, S.P. DenBaars, J.S. Speck, Phys. Stat. Sol. (c) 11(3–4), 690 (2014)

    Google Scholar 

  140. Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, S. Nakamura, Appl. Phys. Lett. 70(8), 981 (1997)

    Article  ADS  Google Scholar 

  141. G. Schmidt, M. Müller, P. Veit, S. Metzner, F. Bertram, J. Hartmann, H. Zhou, H.-H. Wehmann, A. Waag, J. Christen, Sci. Rep. 8, 16026 (2018)

    Article  ADS  Google Scholar 

  142. J. Arbiol et al., Nanoscale 4, 7517 (2012)

    Article  ADS  Google Scholar 

  143. J.T. Griffiths et al., Appl. Phys. Lett. 110, 172105 (2017)

    Article  ADS  Google Scholar 

  144. I. Griffths, D. Cherns, X. Wang, H.-H. Wehman, M. Mandl, M. Strassburg, A. Waag, Phys. Stat. Sol. (c) 11(3–4), 425 (2014)

    Google Scholar 

  145. S.-Y. Bae, K. Lekhal, H.-J. Lee, J.-W. Min, D.-S. Lee, Y. Honda, H. Amano, Phys. Stat. Sol. (b), 1600722 (2017)

    Google Scholar 

  146. C. Tessarek, M. Heilmann, E. Butzen, A. Haab, H. Hardtdegen, C. Dieker, E. Spiecker, S. Christiansen, Cryst. Growth Des. 14(3), 1486 (2014)

    Article  Google Scholar 

  147. J. Hartmann, X. Wang, H. Schuhmann, W. Dziony, L. Caccamo, J. Ledig, M.S. Mohajerani, T. Schimpke, M. Bähr, G. Lilienkamp, W. Daum, M. Seibt, M. Straburg, H.-H. Wehmann, A. Waag, Phys. Stat. Sol. (a) 212(12), 2830 (2015)

    Google Scholar 

  148. A.M. Fischer, Z. Wu, K. Sun, Q. Wei, Y. Huang, R. Senda, D. Iida, M. Iwaya, H. Amano, F.A. Ponce, Appl. Phys. Express 2(4), 041002 (2009)

    Article  ADS  Google Scholar 

  149. F. Wu, Y.-D. Lin, A. Chakraborty, H. Ohta, S.P. DenBaars, S. Nakamura, J.S. Speck, Appl. Phys. Lett. 96(23), 231912 (2010)

    Article  ADS  Google Scholar 

  150. V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, P. Lugli, Effects of macroscopic polarization in III-V nitride multiple quantum wells. Phys. Rev. B 60(12), 8849–8858 (1999)

    Article  ADS  Google Scholar 

  151. N. Grandjean, B. Damilano, S. Dalmasso, M. Leroux, M. Laügt, J. Massies, Built-in electric-field effects in wurtzite AlGaN/GaN quantum wells. J. Appl. Phys. 86(7), 3714 (1999)

    Article  ADS  Google Scholar 

  152. M. Leroux et al., Quantum confined Stark effect due to built-in internal polarization fields in (Al, Ga)N/GaN quantum wells. Phys. Rev. B 58(20), R13371–R13374 (1998)

    Article  ADS  Google Scholar 

  153. G.M.O. Hönig, S. Westerkamp, A. Hoffmann, G. Callsen, Shielding electrostatic fields in polar semiconductor nanostructures. Phys. Rev. Appl. 7(2), 024004 (2017)

    Article  ADS  Google Scholar 

  154. S. Schlichting et al., Suppression of the quantum-confined Stark effect in polar nitride heterostructures. Commun. Phys. 1(1), 48 (2018)

    Article  Google Scholar 

  155. Y. Kayanuma, Phys. Rev. B 38, 9797–9805 (1988)

    Article  ADS  Google Scholar 

  156. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  157. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma, App. Phys. Lett. 61, 2051 (1992)

    Article  ADS  Google Scholar 

  158. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435 (1999)

    Article  Google Scholar 

  159. X.F. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)

    Article  Google Scholar 

  160. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  161. W. Han, S. Fan, L. Qunqing, Y. Hu, Science 277, 1287 (1997)

    Article  Google Scholar 

  162. B. Damilano, J. Brault, B. Alloing, J. Massies, Nano Lett. 16, 1863 (2016)

    Article  ADS  Google Scholar 

  163. J. Müßener, LATh. Greif, S. Kalinowski, G. Callsen, P. Hille, J. Schörmann, M.R. Wagner, A. Schliwa, S. Martí-Sánchez, J. Arbiol, A. Hoffmann, M. Eickhoff, RSC Nanoscale 10, 5591 (2018)

    Article  Google Scholar 

  164. F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estrad, F. Peir, J.R. Morante, M. Eickhoff, J. Appl. Phys. 104, 034309 (2008)

    Article  ADS  Google Scholar 

  165. J. Schörmann, P. Hille, M. Schäfer, J. Müßener, P. Becker, P.J. Klar, M. Kleine-Boymann, M. Rohnke, M. De La Mata, J. Arbiol, D.M. Hofmann, J. Teubert, M. Eickhoff, J. Appl. Phys. 114, 103505 (2013)

    Article  ADS  Google Scholar 

  166. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus, Phys. Rev. Lett. 53, 2173 (1984)

    Article  ADS  Google Scholar 

  167. J. Renard, R. Songmuang, G. Tourbot, C. Bougerol, B. Daudin, B. Gayral, Phys. Rev. B 80, 121305 (2009)

    Article  ADS  Google Scholar 

  168. L. Rigutti, J. Teubert, G. Jacopin, F. Fortuna, M. Tchernycheva, A. De Luna Bugallo, F.H. Julien, F. Furtmayr, M. Stutzmann, M. Eickhoff, Phys. Rev. B 82, 235308 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the German Research Foundation (DFG) for financial support within the Research Instrumentation Program INST 272/148-1, the Collaborative Research Center SFB 787 “Semiconductor Nanophotonics: Materials, Models, Devices”.

Many thanks to Silke Petzold (University of Magdeburg) for her work regarding the sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertram, F. et al. (2020). Optical and Structural Properties of Nitride Based Nanostructures. In: Kneissl, M., Knorr, A., Reitzenstein, S., Hoffmann, A. (eds) Semiconductor Nanophotonics. Springer Series in Solid-State Sciences, vol 194. Springer, Cham. https://doi.org/10.1007/978-3-030-35656-9_5

Download citation

Publish with us

Policies and ethics