Skip to main content
  • 289 Accesses

Abstract

Scarcity of non-renewable energy sources due to the continuous depletion of fossil fuels has paved need for sustainable and environmentally friendly biofuels from biomass. Of all the natural resources used for production of biofuel, lignocellulosic biomass is the most attractive source due to its sustainability, wide abundance and easy availability. Efficient and cost-effective conversion of lignocellulosic biomass to biofuel production requires various steps including pretreatment, saccharification and fermentation process. In the present chapter, we have consolidated different generations of biofuels, composition of lignocellulosic biomass and a brief overview of the current status of biofuel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burk MJ (2010) Sustainable production of industrial chemicals from sugars. Int Sugar J 112:30–35

    CAS  Google Scholar 

  2. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30(6):1447–1457

    Article  CAS  Google Scholar 

  3. Holtzapple MT, Jun JH, Ashok G, Patibandla SL, Dale BE (1991) The ammonia freeze explosion process: a practical lignocellulose pretreatment. App Biochem Biotechnol 28:59–74

    Article  Google Scholar 

  4. Larson ED (2008) Biofuel production technologies: status, prospects and implications for trade and development. In: United Nations conference on trade and development (UNCTAD)

    Google Scholar 

  5. Schmidt O (2006) Chapter 3: Physiology. Chapter 4: Wood cell wall degradation. In: Wood and tree fungi: biology, damage, protection, and use. Springer, New York

    Google Scholar 

  6. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26(6):863–871

    Article  CAS  Google Scholar 

  7. Harinen S (2004) Analysis of the top phase fraction of wood pyrolysis liquids. In: Master’s Thesis, Department of Chemistry, Laboratory of Applied Chemistry, University of Jyvaskyla

    Google Scholar 

  8. Zhao X, Song Y, Liu D (2011) Enzymatic hydrolysis and simultaneous saccharification and fermentation of alkali/peracetic acid-pretreated sugarcane bagasse for ethanol and 2,3-butanediol production. Enzyme Microb Technol 49:413–419

    Article  CAS  Google Scholar 

  9. He J, Cui S, Wang SY (2010) Preparation and crystalline analysis of high grade bamboo dissolving pulp for cellulose acetate. J Polym Sci 107:1029–1038

    Google Scholar 

  10. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius A (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J. https://doi.org/10.1111/j.1742-4658.2010.07585.x

    Article  CAS  Google Scholar 

  11. Cankaya N (2015) Cellulose grafting by Atom transfer Radical polymerization method. In: Cellulose Fundamental aspects and current trends. INTECH. http://dx.doi.org/10.5772/61707

    Google Scholar 

  12. Kirk TK, Cullen D (1988) Enzymology and molecular genetics of wood degradation by white-rot fungi. Environmentally friendly technologies for the pulp and paper industry. John Wiley and Sons, NewYork, pp 273–307

    Google Scholar 

  13. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. App Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  14. Kuhad RC, Gupta R, Khasa YP (2011) Bioethanol production from lignocellulosics: an overview. In: Wealth from waste, 3rd edn. TERI Press, New Delhi, India

    Google Scholar 

  15. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  Google Scholar 

  16. Vivekanand V, Dwivedi P, Sharma A, Sabharwal N, Singh RP (2008) Enhanced delignification of mixed wood pulp by Aspergillus fumigatus laccase mediator system. World J Microbiol Biotechnol 24:2799–2804

    Article  CAS  Google Scholar 

  17. Higuchi T (2006) Look back over the studies of lignin biochemistry. J Wood Sci 52:2–8

    Article  CAS  Google Scholar 

  18. Oluwdare AO, Asagbara EO (2008) Biodegradation of Sterculia setigera (Stercullaceae) chips and its effects on wood basic chemical composition. Inter J Bot 4(4):461–465

    Article  Google Scholar 

  19. Lee HV, Hamid SB, Zain SK (2014) Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci World J. https://doi.org/10.1155/2014/631013

    Article  Google Scholar 

  20. Lansing (1983) Alcohol Fuels in Michigan. Department of Agriculture, State of Michigan, pp 3–4

    Google Scholar 

  21. Demirbas A (2007) Producing and using bioethanol as an automotive fuel. Energy Sour Part B 2:391–401

    Article  CAS  Google Scholar 

  22. Renewable Energy Network 21 (REN21) (2016) Global status report. REN21, Paris, France

    Google Scholar 

  23. Annual Energy Review. Energy Information Administration (EIA). http://www.eia.gov/totalenergy/data/annual/index.php. Accessed 22 Nov 2018

  24. Innovation Outlook: Advanced Liquid Biofuels (2016) International Renewable Energy Agency (IRENA). Abu Dhabi, UAE

    Google Scholar 

  25. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  CAS  Google Scholar 

  26. Bramcourt K (2016) The renewable fuel standard (RFS). In: Brief: congressional research service. Washington, DC, USA, pp 7–5700

    Google Scholar 

  27. Araujo K, Mahajan D, Kerr R, Silva M (2017) Global biofuels at the crossroads: an overview of technical, policy, and investment complexities in the sustainability of biofuel development agriculture. https://doi.org/10.3390/agriculture7040032

    Article  Google Scholar 

  28. US Department of Agriculture (USDA), Brazil Biofuels Annual (2016) GAIN report number BR 16009. Brazilian law 13.263/2016. USDA, Washington DC, USA

    Google Scholar 

  29. US Department of Agriculture (USDA), India Biofuels Annual (2016) GAIN report number IN 6088. USDA, Washington DC, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Aggarwal, N.K. (2020). Introduction. In: Water Hyacinth: A Potential Lignocellulosic Biomass for Bioethanol. Springer, Cham. https://doi.org/10.1007/978-3-030-35632-3_1

Download citation

Publish with us

Policies and ethics