Skip to main content

Transport Phenomena Across Interfaces of Complex Fluids: Drops and Sprays

  • Chapter
  • First Online:
Transport Phenomena in Complex Fluids

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 598))

Abstract

This chapter gives an overview of the interfacial dynamics of complex fluids, with focus on non-Newtonian drop impact phenomena and non-Newtonian sprays. After a general introduction about Newtonian drops and sprays, the impact dynamics of viscoelastic and viscoplastic drops on both homothermal and heated surfaces is discussed. Finally, capillary instabilities and the atomisation process of non-Newtonian fluids are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Attané P, Girard F, Morin V (2007) An energy balance approach of the dynamics of drop impact on a solid surface. Phys Fluids 19(1):012101

    Article  MATH  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newton Fluid Mech 56(3):221–251

    Article  Google Scholar 

  • Barnes AC, Neilson GW, Enderby JE (1995) The structure and dynamics of aqueous solutions containing complex molecules. J Mol Liq 65–66:99–106

    Article  Google Scholar 

  • Bartolo D, Boudaoud A, Narcy G, Bonn D (2007) Dynamics of non-newtonian droplets. Phys Rev Lett 99(17)

    Google Scholar 

  • Bazilevskii AV, Voronkov SI, Entov VM, Rozhkov AN (1981) On orientational effects at breakup of jets and threads of dilute polymer-solutions. Dokl Akad Nauk SSSR 257(2):336–339

    Google Scholar 

  • Bechtel SE, Bogy DB, Talke FE (1981) Impact of a liquid drop against a flat surface. IBM J Res Dev 25(6):963–971

    Article  Google Scholar 

  • Bergeron V, Martin J-Y, Vovelle L (1998) Interaction of droplets with a surface: impact and adhesion. In: Fifth international symposium on adjuvants and agrochemicals memphis, Tennessee, USA, 17–21 Aug 1998

    Google Scholar 

  • Bergeron V, Bonn D, Martin J-Y, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405:772–775

    Article  Google Scholar 

  • Bergeron V, Martin J-Y, Vovelle L (2003) Use of polymers as sticking agents. US Pat 6:534–563

    Google Scholar 

  • Bernardin JD, Mudawar I (2002) A cavity activation and bubble growth model of the leidenfrost point. J Heat Transf 124(5):864–874

    Article  Google Scholar 

  • Bertola V (2004) Drop impact on a hot surface: effect of a polymer additive. Experiments in fluids 37(5):653–664

    Article  Google Scholar 

  • Bertola V (2009a) Wicking with a yield stress fluid. J Phys Condens Matter 21(3)

    Google Scholar 

  • Bertola V (2009b) An experimental study of bouncing leidenfrost drops: comparison between newtonian and viscoelastic liquids. Int J Heat Mass Transf 52(7):1786–1793

    Article  Google Scholar 

  • Bertola V (2010) Effect of polymer additives on the apparent dynamic contact angle of impacting drops. Colloids Surf A: Physicochem Eng Asp 363(1–3):135–140

    Article  Google Scholar 

  • Bertola V (2013) Dynamic wetting of dilute polymer solutions: the case of impacting droplets. Adv Colloid Interface Sci 193–194:1–11

    Article  Google Scholar 

  • Bertola V (2014) Effect of polymer concentration on the dynamics of dilute polymer solution drops impacting on heated surfaces in the leidenfrost regime. Exp Therm Fluid Sci 52:259–269

    Article  Google Scholar 

  • Bertola V (2015) An impact regime map for water drops impacting on heated surfaces. Int J Heat Mass Transf 85:430–437

    Article  Google Scholar 

  • Bertola V, Sefiane K (2005) Controlling secondary atomization during drop impact on hot surfaces by polymer additives. Phys Fluids 17(10):108104

    Article  MATH  Google Scholar 

  • Bertola V, Wang M (2015) Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface. Colloids Surf A: Physicochem Eng Asp 481:600–608

    Article  Google Scholar 

  • Biance A-L, Chevy F, Clanet C, Lagubeau G, Quéré D (2006) On the elasticity of an inertial liquid shock. J Fluid Mech 554(1):47–66

    Article  MATH  Google Scholar 

  • Biolè D, Bertola V (2015a) The fuzzy interface of a drop. Comput Vis Sci 17(1):19–32

    Article  MathSciNet  MATH  Google Scholar 

  • Biolè D, Bertola V (2015b) A goniometric mask to measure contact angles from digital images of liquid drops. Colloids Surf A: Physicochem Eng Asp 467:149–156

    Article  Google Scholar 

  • Biolè D, Bertola V (2015c) The role of the microscale contact line dynamics in the wetting behaviour of complex fluids. Arch Mech 67(5):401–414

    Google Scholar 

  • Biolè D, Wang M, Bertola V (2016) Assessment of direct image processing methods to measure the apparent contact angle of liquid drops. Exp Therm Fluid Sci 76:296–305

    Article  Google Scholar 

  • Black K, Bertola V (2013) Non-newtonian leidenfrost drops. At Sprays 23(3):233–247

    Article  Google Scholar 

  • Bonhoeffer B, Kwade A, Juhnke M (2017) Impact of formulation properties and process parameters on the dispensing and depositioning of drug nanosuspensions using micro-valve technology. J Pharmaceut Sci 106(4):1102–1110

    Article  Google Scholar 

  • Borodin O, Smith GD (2000) Molecular dynamics simulations of poly(ethylene oxide)/lii melts. 2. dynamic properties. Macromolecules 33(6):2273–2283

    Article  Google Scholar 

  • Bousfield DW, Keunings R, Marrucci G, Denn MM (1986) Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments. J Non-Newton Fluid Mech 21:79–97

    Article  Google Scholar 

  • Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (2005) Polymer handbook, 4th edn. Wiley

    Google Scholar 

  • Brenn G, Plohl G (2015) The oscillating drop method for measuring the deformation retardation time of viscoelastic liquids. J Non-Newton Fluid Mech 223:88–97

    Article  MathSciNet  Google Scholar 

  • Brenn G, Plohl G (2017) The formation of drops from viscoelastic liquid jets and sheets—an overview. At Sprays 27:285–302

    Article  Google Scholar 

  • Brenn G, Liu ZB, Durst F (2000) Linear analysis of the temporal instability of axisymmetrical non-newtonian liquid jets. Int J Multiph Flow 26:1621–1644

    Article  MATH  Google Scholar 

  • Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid surface. Proc R Soci Lond A: Math Phys Eng Sci 432:13–41

    Article  Google Scholar 

  • Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. International series of monographs on physics. Clarendon Press

    Google Scholar 

  • Chen L, Wang Y, Peng X, Zhu Q, Zhang K (2018) Impact dynamics of aqueous polymer droplets on superhydrophobic surfaces. Macromolucles 51(19):7817–7827

    Article  Google Scholar 

  • Chen S, Bertola V (2016a) The impact of viscoplastic drops on a heated surface in the leidenfrost regime. Soft Matter 12:7624–7631

    Article  Google Scholar 

  • Chen S, Bertola V (2016b) Jumps, somersaults, and symmetry breaking in leidenfrost drops. Phys Rev E 94(2)

    Google Scholar 

  • Chibowski E (2003) Surface free energy of a solid from contact angle hysteresis. Adv Colloid Interface Sci 103(2):149–172

    Article  Google Scholar 

  • Chibowski E (2007) On some relations between advancing, receding and Young’s contact angles. Adv Colloid Interface Sci 133(1):51–59

    Article  Google Scholar 

  • Christanti Y, Walker LM (2001) Surface tension driven jet break up of strain-hardening polymer solutions. J Non-Newton Fluid Mech 100:9–26

    Article  Google Scholar 

  • Christanti Y, Walker LM (2002) Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance. J Rheol 46:733–748

    Article  Google Scholar 

  • Clanet C, Béguin C, Richard D, Quéré D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208

    Article  MATH  Google Scholar 

  • Coussot P, Gaulard F (2005) Gravity flow instability of viscoplastic materials: the ketchup drip. Phys Rev E 72:031409

    Article  Google Scholar 

  • Crooks R, Cooper-White J, Boger DV (2001) The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chem Eng Sci 56:5575–5592

    Article  Google Scholar 

  • de Gennes PG (1974) Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60(12):5030–5042

    Article  Google Scholar 

  • de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57(3):827–863

    Article  MathSciNet  Google Scholar 

  • Dexter RW (1996) Measurement of extensional viscosity of polymer solutions and its effects on atomization from a spray nozzle. At Sprays 6:167–191

    Article  Google Scholar 

  • Dombrowski N, Johns WR (1963) The aerodynamic instability and disintegration of viscous liquid sheets. Chem Eng Sci 18:203–214

    Article  Google Scholar 

  • Dussan EB (1985) On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Part 2. small drops or bubbles having contact angles of arbitrary size. J Fluid Mech 151:1–20

    Google Scholar 

  • Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–930

    Article  MATH  Google Scholar 

  • Eggers J, Fontelos MA, Josserand C, Zaleski S (2010) Drop dynamics after impact on a solid wall: theory and simulations. Phys Fluids 22(6):062101

    Article  MATH  Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newton Fluid Mech 72:31–53

    Article  Google Scholar 

  • Ford RE, Furmidge CGL (1967) Impact and spreading of spray drops on foliar surfaces. Soc Chem Ind Monogr 25:32–417

    Google Scholar 

  • Fujimoto H, Oku Y, Ogihara T, Takuda H (2010) Hydrodynamics and boiling phenomena of water droplets impinging on hot solid. Int J Multiph Flow 36(8):620–642. ISSN 0301-9322

    Article  Google Scholar 

  • German G, Bertola V (2009a) Impact of shear-thinning and yield-stress drops on solid substrates. J Phys: Condens Matter 21(37):375111

    Google Scholar 

  • German G, Bertola V (2009b) Review of drop impact models and validation with high-viscosity newtonian fluids. At Sprays 19(8)

    Article  Google Scholar 

  • German G, Bertola V (2010a) The free-fall of viscoplastic drops. J Non-Newton Fluid Mech 165(13–14):825–828

    Article  Google Scholar 

  • German G, Bertola V (2010b) Formation of viscoplastic drops by capillary breakup. Phys Fluids 22(3):033101

    Article  MATH  Google Scholar 

  • Goldin M, Yerushalmi J, Pfeffer R, Shinnar R (1969) Breakup of a laminar capillary jet of a viscoelastic fluid. J Fluid Mech 38:689–711

    Article  Google Scholar 

  • Gottfried BS, Lee CJ, Bell KJ (1966) The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate. Int J Heat Mass Transf 9(11):1167–1188

    Article  Google Scholar 

  • Harrison GM, Mun R, Cooper G, Boger DV (1999) A note on the effect of polymer rigidity and concentration on spray atomisation. J Non-Newton Fluid Mech 85:93–104

    Article  MATH  Google Scholar 

  • Hartnett JP, Hu RYZ (1986) Role of rheology in boiling studies of viscoelastic liquids. Int Commun Heat Mass Transf 13(6):627–637. ISSN 0735-1933

    Article  Google Scholar 

  • Josserand C, Thoroddsen ST (2016) Drop impact on a solid surface. Ann Rev Fluid Mech 48(1):365–391

    Article  MathSciNet  MATH  Google Scholar 

  • Kalashnikov VN, Askarov AN (1989) Relaxation time of elastic stresses in liquids with small additions of soluble polymers of high molecular weights. J Eng Phys Thermophys 57(2):874–878

    Article  Google Scholar 

  • Keshavarz B, Sharma V, Houze EC, Koerner MR, Moore JR, Cotts PM, Threlfall-Holmes P, McKinley GH (2015) Studying the effects of extensional properties on atomization of weakly viscoelastic solutions using rayleigh ohnesorge jetting extensional rheometry (rojer). J Non-Newton Fluid Mech 222:171–189

    Article  MathSciNet  Google Scholar 

  • Kim KY, Kang SL, Kwak H-Y (2004) Bubble nucleation and growth in polymer solutions. Polym Eng Sci 44(10):1890–1899

    Article  Google Scholar 

  • Kim JH, Shi W-X, Larson RG (2007) Methods of stretching dna molecules using flow fields. Langmuir 23(2):755–764

    Article  Google Scholar 

  • Kroesser FW, Middleman S (1969) Viscoelastic jet stability. AIChE J 15:383–386

    Article  Google Scholar 

  • Kroger M (2015) Simple, admissible, and accurate approximants of the inverse langevin and brillouin functions, relevant for strong polymer deformations and flows. J Non-Newton Fluid Mech 223:77–87

    Article  MathSciNet  Google Scholar 

  • Lefebvre A (1988) At Sprays. Combustion (Hemisphere Publishing Corporation). Taylor & Francis. ISBN 9780891166030

    Google Scholar 

  • Lin SP, Reitz RD (1998) Drop and spray formation from a liquid jet. Ann Rev Fluid Mech 30(1):85–105

    Article  MathSciNet  MATH  Google Scholar 

  • Lindner A, Vermant J, Bonn D (2003) How to obtain the elongational viscosity of dilute polymer solutions? Physica A 319:125–133

    Article  Google Scholar 

  • Lumley JL (1973) Drag reduction in turbulent flow by polymer additives. J Polym Sci: Macromol Rev 7(1):263–290

    Google Scholar 

  • Luu L-H, Forterre Y (2009) Drop impact of yield-stress fluids. J Fluid Mech 632:301–327

    Article  MATH  Google Scholar 

  • Mao T, Kuhn D, Tran H (1997) Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J 43(9):2169–2179

    Article  Google Scholar 

  • Marmottant P, Villermaux E (2004) Fragmentation of stretched liquid ligaments. Phys Fluids 16:2732–2741

    Article  MATH  Google Scholar 

  • Moreira ALN, Moita AS, Panao MR (2010) Advances and challenges in explaining fuel spray impingement: how much of single droplet impact research is useful? Prog Energy Combust Sci 36(5):554–580

    Article  Google Scholar 

  • Mun RP, Byars JA, Boger DV (1998) The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. J Non-Newton Fluid Mech 74:285–297

    Article  Google Scholar 

  • Mun RP, Young BW, Boger DV (1999) Atomisation of dilute polymer solutions in agricultural spray nozzles. J Non-Newton Fluid Mech 83:163–178

    Article  MATH  Google Scholar 

  • Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions: experimental studies of the deformation and breakup process. Int J Multiph Flow 21(2):151–173

    Article  MATH  Google Scholar 

  • Negri M, Ciezki HK (2015) Effect of elasticity of boger fluids on the atomization behaviour of an impinging jet injector. At Sprays 25:695–714

    Article  Google Scholar 

  • Nigen S (2005) Experimental investigation of the impact of an apparent yield-stress material. At Sprays 15:103–117

    Article  Google Scholar 

  • Oliveira MSN, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. J Non-Newton Fluid Mech 137(1):137–148. Extensional Flow

    Article  Google Scholar 

  • Papageorgiou DT (1995) On the breakup of viscous liquid threads. Phys Fluids 7(7):1529–1544

    Article  MathSciNet  MATH  Google Scholar 

  • Park GY, Harrison GM (2008) Effects of elasticity on the spraying of a non-newtonian fluid. At Sprays 18:243–271

    Article  Google Scholar 

  • Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys fluids 8(3):650–659

    Article  Google Scholar 

  • Pedersen CO (1970) An experimental study of the dynamic behavior and heat transfer characteristics of water droplets impinging upon a heated surface. Int J Heat Mass Transf 13(2):369–381. ISSN 0017-9310

    Article  Google Scholar 

  • Peterlin A (1966) Hydrodynamics of linear macromolecules. Pure Appl Chem 12(1–4):563–586

    Article  Google Scholar 

  • Plateau J (1867) Lettre au sujet de la transformation spontanée d’un cylindre liquide en sphères isolées. Comptes Rendus des Séances de l’Académie des Sciences 65:290–291

    Google Scholar 

  • Quéré D (2013) Leidenfrost dynamics. Ann Rev Fluid Mech 45:197–215

    Article  MathSciNet  MATH  Google Scholar 

  • Rayleigh L (1878) On the instability of jets. Proc Lond Math Soc 10:4–13

    Article  MathSciNet  MATH  Google Scholar 

  • Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lon Ser A Math Phys Sci 29:71–97

    Google Scholar 

  • Rayleigh L (1892) On the instability of a cylinder of viscous liquid under capillary force. Philos Mag 34:145–154

    Article  MATH  Google Scholar 

  • Rein M (1993) Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn Res 12(2):61–93

    Article  Google Scholar 

  • Rein M (ed) (2003) Drop-Surface interactions, CISM courses and lectures no. 456. Springer, Wien-New York

    Google Scholar 

  • Rogers GP, Barnes HA (2001) New measurements of the flow-curves for carbopol dispersions without slip artefacts. Rheologica Acta 40:499–503

    Article  Google Scholar 

  • Roisman IV (2009) Inertia dominated drop collisions. ii. An analytical solution of the navierstokes equations for a spreading viscous film. Phys Fluids 21(5):052104

    Article  MATH  Google Scholar 

  • Roisman IV, Berberović E, Tropea C (2009) Inertia dominated drop collisions. i. On the universal flow in the lamella. Phys Fluids 21(5):052103

    Article  MATH  Google Scholar 

  • Romagnoli V, Felton P, Prudhomme RK (2000) Control of drop size by rheology. In: Proceedings of the eighth international conference on liquid atomization and spray systems (ICLASS), Pasadena (CA, USA), pp 34–38

    Google Scholar 

  • Rozhkov AN (1983) Dynamics of threads of diluted polymer solutions. J Eng Phys 45(1):768–774

    Article  Google Scholar 

  • Rozhkov AN, Prunet-Foch B, Vignes-Adler M (2003) Impact of drops of polymer solutions on small targets. Phys Fluids 15:2006–2019

    Article  MATH  Google Scholar 

  • Saidi A, Martin C, Magnin A (2010) Influence of yield stress on the fluid droplet impact control. J Non-Newton Fluid Mech 165:596–606

    Article  Google Scholar 

  • Saïdi A, Martin C, Magnin A (2011) Effects of surface properties on the impact process of a yield stress fluid drop. Exp Fluids 51(1):211–224

    Article  Google Scholar 

  • Schiaffino S, Sonin AA (1997) Molten droplet deposition and solidification at low weber numbers. Phys Fluids 9(11):3172–3187

    Article  Google Scholar 

  • Schümmer P, Tebel KH (1983) A new elongational rheometer for polymer solutions. J Non-Newton Fluid Mech 12:331–347

    Article  Google Scholar 

  • Smith MI, Bertola V (2010a) Effect of polymer additives on the wetting of impacting droplets. Phys Rev Lett 104(15)

    Google Scholar 

  • Smith MI, Bertola V (2010b) The anti-rebound effect of flexible polymers on impacting drops. In: Proceedings of the 23rd European conference on liquid atomization and spray systems, Brno, Czech Republic, 6–8 Sept 2010

    Google Scholar 

  • Smith MI, Bertola V (2011) Particle velocimetry inside newtonian and non-newtonian droplets impacting a hydrophobic surface. Exp Fluids 50(5):1385–1391

    Article  Google Scholar 

  • Smith MI, Sharp JS (2014) Origin of contact line forces during the retraction of dilute polymer solution drops. Langmuir 30:5455–5459

    Article  Google Scholar 

  • Stelter M (2001) Das Zerstäubungsverhalten nicht-Newtonscher Flüssigkeiten (The atomization behaviour of non-Newonian liquids - in German). Phdthesis, Friedrich-Alexander University Erlangen-Nürnberg

    Google Scholar 

  • Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2000) Validation and application of a novel elongational device for polymer solutions. J Rheol 44:595–616

    Article  Google Scholar 

  • Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2002a) Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J Rheol 46:507–527

    Article  Google Scholar 

  • Stelter M, Brenn G, Durst F (2002b) The influence of viscoelastic fluid properties on spray formation from flat-fan and pressure-swirl atomizers. At Sprays 12:299–327

    Article  Google Scholar 

  • Stow CD, Hadfield MG (1981) An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface. Proc R Soc Lond A: Math Phys Eng Sci 373(1755):419–441

    Article  Google Scholar 

  • Tadmor R (2011) Approaches in wetting phenomena. Soft Matter 7:1577–1580

    Article  Google Scholar 

  • Teske ME, Bilanin AJ (1994) Drop size scaling analysis of non-newtonian fluids. At Sprays 4:473–483

    Article  Google Scholar 

  • Thompson JC, Rothstein JP (2007) The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles. J Non-Newton Fluid Mech 147:11–22

    Article  Google Scholar 

  • Tirtaatmadja V, Sridhar T (1993) A filament stretching device for measurement of extensional viscosity. J. Rheol 37:1081–1102

    Article  Google Scholar 

  • Wachters LHJ, Westerling NAJ (1966) The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem Eng Sci 21(11):1047–1056

    Article  Google Scholar 

  • Wang A-B, Lin C-H, Chen C-C (2000) The critical temperature of dry impact for tiny droplet impinging on a heated surface. Phys Fluids 12(6):1622–1625

    Article  MATH  Google Scholar 

  • Wang Y, Minh D-Q, Amberg G (2017) Impact of viscoelastic droplets. Journal of Non-Newtonian Fluid Mechanics 243:38–46

    Article  MathSciNet  Google Scholar 

  • Weber C (1931) Zum zerfall eines flssigkeitsstrahles. ZAMM—J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 11(2):136–154

    Article  MATH  Google Scholar 

  • Williams PA, English RJ, Blanchard RL, Rose SA, Lyons L, Whitehead M (2008) The influence of the extensional viscosity of very low concentrations of high molecular mass water-soluble polymers on atomisation and droplet impact. Pest Manag Sci 64(5):497–504

    Article  Google Scholar 

  • Worthington AM (1876) On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc R Soc Lond 25(171–178):261–272

    Google Scholar 

  • Yao S-C, Cai KY (1988) The dynamics and leidenfrost temperature of drops impacting on a hot surface at small angles. Exp Therm Fluid Sci 1(4):363–371. ISSN 0894-1777

    Article  Google Scholar 

  • Yarin AL (1990) Strong flows of polymeric liquids. Part 1. Rheological behaviour. J Non-Newton Fluid Mech 37:113–138

    Article  MATH  Google Scholar 

  • Yarin AL (1993) Free liquid jets and films—hydrodynamics and rheology. Longman Sci Tech

    Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Dexter RW, Fox RD, Reichard DL, Brazee RD, Ozkan HE (1997) Effects of polymer composition and viscosity on droplet size of recirculated spray solutions. J Agric Eng Res 67:35–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volfango Bertola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 CISM International Centre for Mechanical Sciences, Udine

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertola, V., Brenn, G. (2020). Transport Phenomena Across Interfaces of Complex Fluids: Drops and Sprays. In: Burghelea, T., Bertola, V. (eds) Transport Phenomena in Complex Fluids. CISM International Centre for Mechanical Sciences, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-030-35558-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35558-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35557-9

  • Online ISBN: 978-3-030-35558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics