Skip to main content

Traveling Waves and Pattern Formation for Spatially Discrete Bistable Reaction-Diffusion Equations

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 312))

Abstract

We survey some recent results on traveling waves and pattern formation in spatially discrete bistable reaction-diffusion equations. We start by recalling several classic results concerning the existence, uniqueness and stability of travelling wave solutions to the discrete Nagumo equation with nearest-neighbour interactions, together with the Fredholm theory behind some of the proofs. We subsequently discuss extensions involving wave connections between periodic equilibria, long-range interactions and planar lattices. We show how some of the results can be extended to the two-component discrete FitzHugh–Nagumo equation, which can be analyzed using singular perturbation theory. We conclude by studying the behaviour of the Nagumo equation when discretization schemes are used that involve both space and time, or that are non-uniform but adaptive in space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Actually, in order to ensure that the boundary conditions (23) are satisfied one needs to consider perturbations \(v \in W^{1,p}\) for \(1 \le p < \infty \) while taking \(\varPhi \in W^{1, \infty }\).

  2. 2.

    Here we use modulo arithmetic on i.

References

  1. Abell, K.A., Elmer, C.E., Humphries, A.R., Van Vleck, E.S.: Computation of mixed type functional differential boundary value problems. SIAM J. Appl. Dyn. Syst. 4, 755–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alfaro, M., Droniou, J., Matano, H.: Convergence rate of the Allen-Cahn equation to generalized motion by mean curvature. J. Evol. Equ. 12(2), 267–294 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  4. Anderson, T., Faye, G., Scheel, A., Stauffer, D.: Pinning and unpinning in nonlocal systems. J. Dyn. Differ. Equ. 28(3–4), 897–923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation. Partial differential equations and related topics (Program, Tulane Univ., New Orleans, La., 1974). Lecture Notes in Mathematics, vol. 446, pp. 5–49. Springer, Berlin (1975)

    Chapter  Google Scholar 

  6. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bakker, B.: Nonlinear waves in local and nonlocal media: a topological approach. Ph.D. Thesis (2019)

    Google Scholar 

  8. Bakker, B., Scheel, A.: Spatial Hamiltonian identities for nonlocally coupled systems. Forum of Mathematics, Sigma, vol. 6. Cambridge University Press, Cambridge (2018)

    Google Scholar 

  9. Barashenkov, I., Oxtoby, O., Pelinovsky, D.: Translationally invariant discrete kinks from one-dimensional maps. Phys. Rev. E 72, 035602 (2005)

    Article  MathSciNet  Google Scholar 

  10. Bates, P.W., Chen, F.: Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation. J. Math. Anal. Appl. 273(1), 45–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bates, P.W., Chen, X., Chmaj, A.J.J.: Traveling waves of bistable dynamics on a lattice. SIAM J. Math. Anal. 35(2), 520–546 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bates, P.W., Chmaj, A.: A discrete convolution model for phase transitions. Arch. Ration. Mech. Anal. 150, 281–305 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beck, M., Hupkes, H.J., Sandstede, B., Zumbrun, K.: Nonlinear stability of semidiscrete shocks for two-sided schemes. SIAM J. Math. Anal. 42, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benzoni-Gavage, S., Huot, P.: Existence of semi-discrete shocks. Discret. Contin. Dyn. Syst. 8, 163–190 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benzoni-Gavage, S., Huot, P., Rousset, F.: Nonlinear stability of semidiscrete shock waves. SIAM J. Math. Anal. 35, 639–707 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Berendsen, J.: Horizontal travelling waves on the lattice. Ph.D. thesis, Masters thesis, Leiden University (2015)

    Google Scholar 

  17. Berestycki, H., Hamel, F., Matano, H.: Bistable traveling waves around an obstacle. Commun. Pure Appl. Math. 62(6), 729–788 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 9, 379–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Beyn, W.J., Pilyugin, S.Y.: Attractors of reaction diffusion systems on infinite lattices. J. Dyn. Diff. Equ. 15, 485–515 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Beyn, W.-J., Thümmler, V.: Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst. 3(2), 85–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bhattacharya, K.: Microstructure of Martensite: Why it Forms and How it Gives Rise to the Shape-Memory Effect, Vol. 2. Oxford University Press, Oxford (2003)

    Google Scholar 

  22. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A: Math. Theor. 45, 3 (2011)

    Google Scholar 

  23. Bressloff, P.C.: Waves in Neural Media: From Single Neurons to Neural Fields. Lecture Notes on Mathematical Modeling in the Life Sciences. Springer, Berlin (2014)

    Google Scholar 

  24. Brucal-Hallare, M., Van Vleck, E.: Traveling wavefronts in an antidiffusion lattice Nagumo model. SIAM J. Appl. Dyn. Syst. 10(3), 921–959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cahn, J.W.: Theory of crystal growth and interface motion in crystalline materials. Acta Metall. 8, 554–562 (1960)

    Article  Google Scholar 

  26. Cahn, J.W., Chow, S.-N., Van Vleck, E.S.: Spatially discrete nonlinear diffusion equations. Rocky Mountain J. Math. 25(1), 87–118 (1995). Second Geoffrey J. Butler Memorial Conference in Differential Equations and Mathematical Biology (Edmonton, AB, 1992)

    Google Scholar 

  27. Cahn, J.W., Mallet-Paret, J., Van Vleck, E.S.: Traveling wave solutions for systems of ODE’s on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59, 455–493 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Cahn, J.W., Novick-Cohen, A.: Evolution equations for phase separation and ordering in binary alloys. J. Stat. Phys. 76, 877–909 (1994)

    Article  MATH  Google Scholar 

  29. Carpenter, G.: A geometric approach to singular perturbation problems with applications to nerve impulse equations. J. Differ. Equ. 23, 335–367 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carter, P., de Rijk, B., Sandstede, B.: Stability of traveling pulses with oscillatory tails in the FitzHugh-Nagumo system. J. Nonlinear Sci. 26(5), 1369–1444 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carter, P., Sandstede, B.: Fast pulses with oscillatory tails in the FitzHugh-Nagumo system. SIAM J. Math. Anal. 47(5), 3393–3441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Celli, V., Flytzanis, N.: Motion of a screw dislocation in a crystal. J. Appl. Phys. 41(11), 4443–4447 (1970)

    Article  Google Scholar 

  33. Chen, C., Choi, Y.: Traveling pulse solutions to FitzHugh-Nagumo equations. Calc. Var. Partial Differ. Equ. 54(1), 1–45 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chen, X.: Existence, uniqueness and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2, 125–160 (1997)

    MathSciNet  MATH  Google Scholar 

  35. Chen, X., Guo, J.-S., Wu, C.-C.: Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal. 189(2), 189–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen, X., Guo, J.S., Wu, C.C.: Traveling waves in discrete periodic media for bistable dynamics. Arch. Ration. Mech. Anal. 189, 189–236 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, X., Hastings, S.P.: Pulse waves for a semi-discrete Morris-Lecar type model. J. Math. Bio. 38, 1–20 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chi, H., Bell, J., Hassard, B.: Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Bio. 24, 583–601 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149(2), 248–291 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chow, S.-N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Random Comput. Dyn. 4(2–3), 109–178 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Chua, L.O., Yang, L.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  42. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cook, H., de Fontaine, D., Hilliard, J.: A model for diffusion on cubic lattices and its application to the early stages of ordering. Acta Metall. 17, 765–773 (1969)

    Article  Google Scholar 

  44. Cornwell, P.: Opening the Maslov Box for Traveling Waves in Skew-Gradient Systems (2017). arXiv:1709.01908

  45. Cornwell, P., Jones, C.K.R.T.: On the existence and stability of fast traveling waves in a doubly-diffusive FitzHugh-Nagumo system. SIAM J. Appl. Dyn. Syst. 17(1), 754–787 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cuevas, J., English, L.Q., Kevrekidis, P., Anderson, M.: Discrete breathers in a forced-damped array of coupled pendula: modeling, computation, and experiment. Phys. Rev. Lett. 102(22), 224101 (2009)

    Article  Google Scholar 

  47. Dauxois, T., Peyrard, M., Bishop, A.R.: Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E 47, 684–695 (1993)

    Article  MATH  Google Scholar 

  48. de Camino-Beck, T., Lewis, M.: Invasion with stage-structured coupled map lattices: application to the spread of scentless chamomile. Ecol. Modell. 220(23), 3394–3403 (2009)

    Article  Google Scholar 

  49. D’Este, E., Kamin, D., Göttfert, F., El-Hady, A., Hell, S.E.: STED nanoscopy reveals the ubiquity of subcortical cytoskeleton periodicity in living neurons. Cell Rep. 10(8), 1246–1251 (2015)

    Article  Google Scholar 

  50. D’Este, E., Kamin, D., Velte, C., Göttfert, F., Simons, M., Hell, S.E.: Subcortical cytoskeleton periodicity throughout the nervous system. Sci. Rep. 6(6), 22741 (2016)

    Article  Google Scholar 

  51. Diekmann, O., van Gils, S.A., Verduyn-Lunel, S.M., Walther, H.O.: Delay Equations. Springer, New York (1995)

    Book  MATH  Google Scholar 

  52. Dmitriev, S.V., Abe, K., Shigenari, T.: Domain wall solutions for EHM model of crystal: structures with period multiple of four. Phys. D: Nonlinear Phenom. 147(1–2), 122–134 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  53. Dmitriev, S.V., Kevrekidis, P.G., Yoshikawa, N.: Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential. J. Phys. A. 38, 7617–7627 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. Elmer, C.E.: Finding stationary fronts for a discrete Nagumo and wave equation; construction. Phys. D 218, 11–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. Elmer, C.E., Van Vleck, E.S.: Computation of traveling waves for spatially discrete bistable reaction-diffusion equations. Appl. Numer. Math. 20, 157–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  56. Elmer, C.E., Van Vleck, E.S.: Analysis and computation of traveling wave solutions of bistable differential-difference equations. Nonlinearity 12, 771–798 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  57. Elmer, C.E., Van Vleck, E.S.: Traveling wave solutions for bistable differential difference equations with periodic diffusion. SIAM J. Appl. Math. 61, 1648–1679 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  58. Elmer, C.E., Van Vleck, E.S.: A variant of Newton’s method for the computation of traveling waves of bistable differential-difference equations. J. Dyn. Differ. Equ. 14, 493–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Elmer, C.E., Van Vleck, E.S.: Anisotropy, propagation failure, and wave speedup in traveling waves of discretizations of a Nagumo PDE. J. Comput. Phys. 185(2), 562–582 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Elmer, C.E., Van Vleck, E.S.: Existence of monotone traveling fronts for BDF discretizations of bistable reaction-diffusion equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 10(1–3), 389–402 (2003). Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems (London, ON, 2001)

    Google Scholar 

  61. Elmer, C.E., Van Vleck, E.S.: Dynamics of monotone travelling fronts for discretizations of Nagumo PDEs. Nonlinearity 18, 1605–1628 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  62. Elmer, C.E., Van Vleck, E.S.: Spatially Discrete FitzHugh-Nagumo Equations. SIAM J. Appl. Math. 65, 1153–1174 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  63. English, L.Q., Thakur, R.B., Stearrett, R.: Patterns of traveling intrinsic localized modes in a driven electrical lattice. Phys. Rev. E 77, 066601 (2008)

    Article  Google Scholar 

  64. Ermentrout, B.: Neural networks as spatio-temporal pattern-forming systems. Rep. Prog. Phys. 61(4), 353 (1998)

    Article  Google Scholar 

  65. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction-diffusion systems. Phys. D 67, 237–244 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  66. Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45(9), 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  67. Fath, G.: Propagation failure of traveling waves in a discrete bistable medium. Phys. D 116, 176–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  68. Faye, G., Scheel, A.: Fredholm properties of nonlocal differential operators via spectral flow. Indiana Univ. Math. J. 63, 1311–1348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  69. Faye, G., Scheel, A.: Existence of pulses in excitable media with nonlocal coupling. Adv. Math. 270, 400–456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Faye, G., Scheel, A.: Center manifolds without a phase space. Trans. Am. Math. Soc. 370(8), 5843–5885 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  71. Fiedler, B., Scheurle, J.: Discretization of homoclinic orbits, rapid forcing and “invisible” chaos. Mem. Am. Math. Soc. 119(570) (1996)

    Article  MathSciNet  MATH  Google Scholar 

  72. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  73. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1966)

    Article  Google Scholar 

  74. FitzHugh, R.: Mathematical Models of Excitation and Propagation in Nerve. Publisher Unknown (1966)

    Google Scholar 

  75. Fitzhugh, R.: Motion picture of nerve impulse propagation using computer animation. J. Appl. Physiol. 25(5), 628–630 (1968)

    Article  Google Scholar 

  76. Flach, S., Zolotaryuk, Y., Kladko, K.: Moving lattice kinks and pulses: an inverse method. Phys. Rev. E 59, 6105–6115 (1999)

    Article  Google Scholar 

  77. Grüne, L.: Attraction rates, robustness, and discretization of attractors. SIAM J. Numer. Anal. 41(6), 2096–2113 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  78. Hale, J.K., Verduyn-Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  79. Haragus, M., Scheel, A.: Almost planar waves in anisotropic media. Commun. Partial Differ. Equ. 31(5), 791–815 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  80. Haragus, M., Scheel, A.: Corner defects in almost planar interface propagation. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, vol. 23, pp. 283–329. Elsevier, New York (2006)

    Google Scholar 

  81. Haragus, M., Scheel, A.: A bifurcation approach to non-planar traveling waves in reaction-diffusion systems. GAMM-Mitteilungen 30(1), 75–95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  82. Härterich, J., Sandstede, B., Scheel, A.: Exponential dichotomies for linear non-autonomous functional differential equations of mixed type. Indiana Univ. Math. J. 51(5), 1081–1109 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  83. Hastings, S.: On travelling wave solutions of the Hodgkin-Huxley equations. Arch. Ration. Mech. Anal. 60, 229–257 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  84. Hillert, M.: A solid-solution model for inhomogeneous systems. Acta Metall. 9, 525–535 (1961)

    Article  Google Scholar 

  85. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952)

    Article  Google Scholar 

  86. Hoffman, A., Hupkes, H.J., Van Vleck, E.S.: Multi-dimensional stability of waves travelling through rectangular lattices in rational directions. Trans. Am. Math. Soc. 367(12), 8757–8808 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  87. Hoffman, A., Hupkes, H.J., Van Vleck, E.S.: Entire solutions for bistable lattice differential equations with obstacles. Mem. Am. Math. Soc. 250(1188), 1–119 (2017)

    MathSciNet  MATH  Google Scholar 

  88. Hoffman, A., Mallet-Paret, J.: Universality of crystallographic pinning. J. Dyn. Differ. Equ. 22, 79–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  89. Huang, W., Hupkes, H.J., Lozada-Cruz, G., Van Vleck, E.S.: Propagation failure for traveling waves of reaction-diffusion equations under moving mesh discretization. In preparation

    Google Scholar 

  90. Huang, W., Russell, R.D.: Adaptive mesh movement in 1D. Adaptive Moving Mesh Methods, pp. 27–135. Springer, Berlin (2011)

    Chapter  MATH  Google Scholar 

  91. Humphries, A.R., Moore, B.E., Van Vleck, E.S.: Front solutions for bistable differential-difference equations with inhomogeneous diffusion. SIAM J. Appl. Math. 71(4), 1374–1400 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  92. Hupkes, H.J.: Invariant Manifolds and Applications for Functional Differential Equations of Mixed Type. Ph.D. Thesis(2008)

    Google Scholar 

  93. Hupkes, H.J., Augeraud-Véron, E.: Well-Posedness of Initial Value Problems for Vector-Valued Functional Differential Equations of Mixed Type. Preprint

    Google Scholar 

  94. Hupkes, H.J., Morelli, L.: Travelling Corners for Spatially Discrete Reaction-Diffusion System. Pure Appl. Anal. (2019). arXiv:1901.02319

  95. Hupkes, H.J., Morelli, L., Stehlík, P.: Bichromatic travelling waves for lattice Nagumo equations. SIAM J. Appl. Dyn. Syst. 18.2(2019), 973–1014 (2018). arXiv:1805.10977

    Article  MathSciNet  MATH  Google Scholar 

  96. Hupkes, H.J., Morelli, L., Stehlík, P., Švígler, V.: Counting and ordering periodic stationary solutions of lattice Nagumo equations. Appl. Math. Lett. (2019). arXiv:1905.06107v1

  97. Hupkes, H.J., Morelli, L., Stehlík, P., Švígler, V.: Multichromatic travelling waves for lattice Nagumo equations. Appl. Math. Comput. 361(2019), 430–452 (2019). arXiv:1901.07227

    Article  MathSciNet  MATH  Google Scholar 

  98. Hupkes, H.J., Pelinovsky, D., Sandstede, B.: Propagation failure in the discrete Nagumo equation. Proc. Am. Math. Soc. 139(10), 3537–3551 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  99. Hupkes, H.J., Sandstede, B.: Modulated Wave Trains for Lattice Differential Systems. J. Dyn. Differ. Equ. 21, 417–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  100. Hupkes, H.J., Sandstede, B.: Travelling pulse solutions for the discrete FitzHugh-Nagumo system. SIAM J. Appl. Dyn. Syst. 9, 827–882 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  101. Hupkes, H.J., Sandstede, B.: Stability of Pulse Solutions for the Discrete FitzHugh-Nagumo System. Trans. AMS 365, 251–301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  102. Hupkes, H.J., Van Vleck, E.S.: Travelling Waves for Adaptive Grid Discretizations of Reaction-Diffusion Systems. Preprint

    Google Scholar 

  103. Hupkes, H.J., Van Vleck, E.S.: Negative diffusion and traveling waves in high dimensional lattice systems. SIAM J. Math. Anal. 45(3), 1068–1135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  104. Hupkes, H.J., Van Vleck, E.S.: Travelling waves for complete discretizations of reaction diffusion systems. J. Dyn. Differ. Equ. 28(3–4), 955–1006 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  105. Hupkes, H.J., Verduyn-Lunel, S.M.: Analysis of Newton’s method to compute travelling waves in discrete media. J. Dyn. Differ. Equ. 17, 523–572 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  106. Hupkes, H.J., Verduyn-Lunel, S.M.: Center manifold theory for functional differential equations of mixed type. J. Dyn. Differ. Equ. 19, 497–560 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  107. Hupkes, H.J., Verduyn-Lunel, S.M.: Center manifolds for periodic functional differential equations of mixed type. J. Differ. Equ. 245, 1526–1565 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  108. Hupkes, H.J., Verduyn-Lunel, S.M.: Lin’s method and homoclinic bifurcations for functional differential equations of mixed type. Indiana Univ. Math. J. 58, 2433–2487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  109. Jones, C.K.R.T.: Stability of the travelling wave solutions of the FitzHugh-Nagumo system. Trans. AMS 286, 431–469 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  110. Jones, C.K.R.T., Kopell, N., Langer, R.: Construction of the FitzHugh-Nagumo pulse using differential forms. In: Swinney, H., Aris, G., Aronson, D.G. (eds.) Patterns and Dynamics in Reactive Media. IMA Volumes in Mathematics and its Applications, vol. 37, pp. 101–116. Springer, New York (1991)

    Chapter  Google Scholar 

  111. Kapitula, T.: Multidimensional stability of planar travelling waves. Trans. Am. Math. Soc. 349(1), 257–269 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  112. Kawasaki, K., Ohta, T.: Kinetic drumhead model of interface I. Prog. Theor. Phys. 67(1), 147–163 (1982)

    Article  Google Scholar 

  113. Keener, J., Sneed, J.: Mathematical Physiology. Springer, New York (1998)

    Book  MATH  Google Scholar 

  114. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  115. Keener, J.P.: Propagation of waves in an excitable medium with discrete release sites. SIAM J. Appl. Math. 61(1), 317–334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  116. Kevrekidis, P., Frantzeskakis, D., Theocharis, G., Kevrekidis, I.: Guidance of matter waves through Y-junctions. Phys. Lett. A 317(5), 513–522 (2003)

    Article  Google Scholar 

  117. Kleefeld, B., Khaliq, A., Wade, B.: An ETD Crank-Nicolson method for reaction-diffusion systems. Numer. Methods PDEs 28(4), 1309–1335 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  118. Krupa, M., Sandstede, B., Szmolyan, P.: Fast and slow waves in the FitzHugh-Nagumo equation. J. Differ. Equ. 133, 49–97 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  119. Lamb, C., Van Vleck, E.S.: Neutral mixed type functional differential equations. J. Dyn. Differ. Equ. 28(3–4), 763–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  120. Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Commun. Pure Appl. Math. 9(2), 267–293 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  121. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463(1–3), 1–126 (2008)

    Article  Google Scholar 

  122. Lillie, R.S.: Factors affecting transmission and recovery in the passive iron nerve model. J. General Physiol. 7, 473–507 (1925)

    Article  Google Scholar 

  123. Lin, X.B.: Using Melnikov’s method to Solve Shilnikov’s problems. Proc. Roy. Soc. Edinb. 116, 295–325 (1990)

    Article  MATH  Google Scholar 

  124. Mallet-Paret, J.: Spatial patterns, spatial chaos and traveling waves in lattice differential equations. In: Stochastic and Spatial Structures of Dynamical Systems, Royal Netherlands Academy of Sciences. Proceedings, Physics Section. Series 1, Vol. 45. Amsterdam, pp. 105–129 (1996)

    Google Scholar 

  125. Mallet-Paret, J.: The Fredholm alternative for functional-differential equations of mixed type. J. Dyn. Differ. Equ. 11(1), 1–47 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  126. Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems. J. Dynam. Differ. Equ. 11(1), 49–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  127. Mallet-Paret, J.: Crystallographic Pinning: Direction Dependent Pinning in Lattice Differential Equations. Citeseer (2001)

    Google Scholar 

  128. Mallet-Paret, J., Verduyn-Lunel, S.M.: Exponential dichotomies and Wiener-Hopf factorizations for mixed-type functional differential equations. J. Differ. Equ. (to appear)

    Google Scholar 

  129. Merks, R.M., Van de Peer, Y., Inzé, D., Beemster, G.T.: Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci. 12(9), 384–390 (2007)

    Article  Google Scholar 

  130. Morelli, L.: Travelling Patterns on Discrete Media. Ph.D. Thesis (2019) http://pub.math.leidenuniv.nl/~morellil/Thesis.pdf

  131. Mukherjee, S., Spracklen, A., Choudhury, D., Goldman, N., Öhberg, P., Andersson, E., Thomson, R.R.: Observation of a localized flat-band state in a photonic lieb lattice. Phys. Rev. Lett. 114, 245504 (2015)

    Article  Google Scholar 

  132. Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatoš, A.: Existence and non-existence of fisher-KPP transition fronts. Arch. Ration. Mech. Anal. 203(1), 217–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  133. Pinto, D.J., Ermentrout, G.B.: Spatially structured activity in synaptically coupled neuronal networks: 1. Traveling fronts and pulses. SIAM J. Appl. Math. 62, 206–225 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  134. Qin, W.-X., Xiao, X.: Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices. Nonlinearity 20, 2305–2317 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  135. Ranvier, L.A.: Lećons sur l’Histologie du Système Nerveux, par M. L. Ranvier, recueillies par M. Ed. Weber. F. Savy, Paris (1878)

    Google Scholar 

  136. Roosen, A.R., McCormack, R.P., Carter, W.C.: Wulffman: a tool for the calculation and display of crystal shapes. Comput. Mater. Sci. 11(1), 16–26 (1998)

    Article  Google Scholar 

  137. Rustichini, A.: Functional-differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 1(2), 121–143 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  138. Rustichini, A.: Hopf bifurcation for functional-differential equations of mixed type. J. Dyn. Differ. Equ. 1(2), 145–177 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  139. Sakamoto, K.: Invariant manifolds in singular perturbation Problems. Proc. Roy. Soc. Edinb. A 116, 45–78 (1990)

    Article  MATH  Google Scholar 

  140. Scheel, A., Tikhomirov, S.: Depinning asymptotics in ergodic media. In: International Conference on Patterns of Dynamics, pp. 88–108. Springer (2016)

    Google Scholar 

  141. Scheel, A., Van Vleck, E.S.: Lattice differential equations embedded into reaction-diffusion systems. Proc. Roy. Soc. Edinb. Sect. A 139(1), 193–207 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  142. Schouten-Straatman, W.M., Hupkes, H.J.: Travelling waves for spatially discrete systems of FitzHugh-Nagumo type with periodic coefficients. SIAM J. Math. Anal. 51(4), 3492–3532 (2018). arXiv:1808.00761

    Article  MathSciNet  MATH  Google Scholar 

  143. Schouten-Straatman, W.M., Hupkes, H.J.: Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions. Discret. Contin. Dyn. Syst. A 39(9) (2019)

    Google Scholar 

  144. Sen, S., Hong, J., Bang, J., Avalos, E., Doney, R.: Solitary waves in the granular chain. Phys. Rep. 462(2), 21–66 (2008)

    Article  MathSciNet  Google Scholar 

  145. Slavík, A.: Invariant regions for systems of lattice reaction-diffusion equations. J. Differ. Equ. 263(11), 7601–7626 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  146. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics (2012). Springer Science & Business Media

    Google Scholar 

  147. Sneyd, J.: Mathematical modeling of calcium dynamics and signal transduction. Tutorials in Mathematical Biosciences II. Lecture Notes in Mathematics, vol. 187. Springer, New York (2005)

    Chapter  MATH  Google Scholar 

  148. Speight, J.M.: Topological discrete kinks. Nonlinearity 12, 1373–1387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  149. Stehlík, P.: Exponential number of stationary solutions for Nagumo equations on graphs. J. Math. Anal. Appl. 455(2), 1749–1764 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  150. Tagantsev, A.K., Cross, L.E., Fousek, J.: Domains in Ferroic Crystals and Thin Films. Springer, Berlin (2010)

    Book  Google Scholar 

  151. Tonnelier, A.: McKean Caricature of the FitzHugh-Nagumo model: traveling pulses in a discrete diffusive medium. Phys. Rev. E 67, 036105 (2003)

    Article  MathSciNet  Google Scholar 

  152. Vainchtein, A., Van Vleck, E.S.: Nucleation and propagation of phase mixtures in a bistable chain. Phys. Rev. B 79, 144123 (2009)

    Article  Google Scholar 

  153. Vainchtein, A., Van Vleck, E.S., Zhang, A.: Propagation of periodic patterns in a discrete system with competing interactions. SIAM J. Appl. Dyn. Syst. 14(2), 523–555 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  154. van Hal, B.: Travelling Waves in Discrete Spatial Domains. Bachelor Thesis (2017)

    Google Scholar 

  155. Van Vleck, E.S., Zhang, A.: Competing interactions and traveling wave solutions in lattice differential equations. Commun. Pure Appl. Anal. 15(2), 457–475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  156. Vicencio, R.A., Cantillano, C., Morales-Inostroza, L., Real, B., Mejía-Cortés, C., Weimann, S., Szameit, A., Molina, M.I.: Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015)

    Article  Google Scholar 

  157. Wang, Y., Liao, X., Xiao, D., Wong, K.-W.: One-way hash function construction based on 2D coupled map lattices. Inf. Sci. 178(5), 1391–1406 (2008)

    Article  MATH  Google Scholar 

  158. Wolf, P.E., Balibar, S., Gallet, F.: Experimental observation of a third roughening transition on hcp He 4 crystals. Phys. Rev. Lett. 51(15), 1366 (1983)

    Article  Google Scholar 

  159. Xu, K., Zhong, G., Zhuang, X.: Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339(6118), 452–456 (2013)

    Article  Google Scholar 

  160. Zumbrun, K.: Instantaneous shock location and one-dimensional nonlinear stability of viscous shock waves. Q. Appl. Math. 69(1), 177–202 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  161. Zumbrun, K., Howard, P.: Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47(3), 741–871 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

HJH, LM and WSS acknowledge support from the Netherlands Organization for Scientific Research (NWO) (grants 639.032.612 and 613.001.304). EVV was supported in part by NSF grant # DMS-1714195.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik S. Van Vleck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hupkes, H.J., Morelli, L., Schouten-Straatman, W.M., Van Vleck, E.S. (2020). Traveling Waves and Pattern Formation for Spatially Discrete Bistable Reaction-Diffusion Equations. In: Bohner, M., Siegmund, S., Šimon Hilscher, R., Stehlík, P. (eds) Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018. Springer Proceedings in Mathematics & Statistics, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-35502-9_3

Download citation

Publish with us

Policies and ethics