Skip to main content

Stability Investigation of Biosensor Model Based on Finite Lattice Difference Equations

  • Conference paper
  • First Online:
Difference Equations and Discrete Dynamical Systems with Applications (ICDEA 2018)

Abstract

We consider the delayed antibody-antigen competition model for two-dimensional array of biopixels

$$\begin{aligned} \begin{aligned} x_{i,j}(n+1)&=x_{i,j}(n)\exp \big \{\beta - \gamma y_{i,j}(n-r) - \delta _x x_{i,j}(n-r) \big \} + \hat{S}\left\{ x_{i,j}(n) \right\} ,\\ y_{i,j}(n+1)&=y_{i,j}(n)\exp \big \{-\mu _y + \eta \gamma x_{i,j}(n-r) - \delta _y y_{i,j}(n) \big \}, i,j=\overline{1,N}, \end{aligned} \end{aligned}$$

\(n, r\in \mathbb {N}\). Here \(x_{i,j}(t)\) is the concentration of antigens, \(y_{i,j}(t)\) is the concentration of antibodies in biopixel (ij), \(i,j=\overline{1,N}\). \(\hat{S} \{ x_{i,j}(n)\} = (D/\varDelta ^2)\{x_{i-1,j}(n)+x_{i+1,j} (n)+x_{i,j-1}(n)+x_{i,j+1}(n) - 4x_{i,j}(n)\}\) is spatial diffusion-like operator. Permanence of the system is investigated. Stability research uses approach of Lyapunov functions. Numerical simulations are used in order to investigate qualitative behavior when changing the value of time delay \(r \in \mathbb {N}\) and diffusion \(D/\varDelta ^2\). It was shown that when increasing the value of time delay r, we transit from steady state through Hopf bifurcation, increasing period and finally to chaotic behavior. The increase of diffusion causes an appearance of chaotic solutions also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Diffusion term is considered be additive in order to get clear permanence and stability results. Actually the diffusion on discrete space may be represented by a matrix multiplication also [4].

  2. 2.

    Lemma 4 offers necessary condition (12).

  3. 3.

    In order to substantiate it, we assume the contrary, namely, there are \(\epsilon _1>0\) and \(i^\star ,j^\star \in \overline{1,N}\) such that \(x_{i^\star ,j^\star }(n)>M_{x,i^\star ,j^\star }(r)\frac{\exp (\beta - 1)}{\delta _x} + \epsilon _1\), for all \(n>0\). Then

    $$\begin{aligned} \begin{aligned} \lim _{n\rightarrow \infty } \sup \sum _{i,j=1}^N{x_{i,j}(n)}&\le \frac{\exp (\beta -1)}{\delta _x}\sum _{i,j=1}^N{M_{x,i,j}(r)} < \frac{\exp (\beta -1)}{\delta _x}\sum _{i,j=1,i\ne i^\star , j\ne j^\star }^N{M_{x,i,j}(r)}\\ + x_{i^\star ,j^\star } - \epsilon _1&\le \frac{\exp (\beta -1)}{\delta _x}\sum _{i,j=1}^N{M_{x,i,j}(r)} + \hat{S}\left\{ x_{i^\star ,j^\star }(n-1) \right\} - \epsilon _1, \end{aligned} \end{aligned}$$

    which is a contradiction at \(n\rightarrow \infty \).

  4. 4.

    Here we use that \(\frac{1}{x} \exp (x-1)>1\) for \(x>0\).

  5. 5.

    Here we use epidemiological term “endemic” meaning the state when the “infection” (in this context, antigen) is constantly maintained at a baseline level in an area without external inputs.

  6. 6.

    Hereinafter we omit units of dimensions of parameters.

  7. 7.

    After scaling of \(\gamma \) the value \(\eta = 0.8/\gamma \) may not be applicable for Nicholson-type difference system (it causes number overflow). So, we have decreased it to 0.01184 experimentally.

References

  1. Allen, L.J.S.: Persistence, extinction, and critical patch number for island populations. J. Math. Biol. 24(6), 617–625 (1987)

    Article  MathSciNet  Google Scholar 

  2. Berger, C., Hees, A., Braunreuther, S., Reinhart, G.: Characterization of cyber-physical sensor systems. Proc. CIRP 41, 638–643 (2016)

    Article  Google Scholar 

  3. Bevers, M., Flather, C.H.: Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices. Theor. Popul. Biol. 55(1), 61–76 (1999)

    Article  Google Scholar 

  4. Caswell, H.: Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer Associates, Massachusetts (1989)

    Google Scholar 

  5. Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems. J. Differ. Equ. 149(2), 248–291 (1998)

    Article  MathSciNet  Google Scholar 

  6. Chow, S.-N., Shen, W.: Dynamics in a discrete nagumo equation: spatial topological chaos. SIAM J. Appl. Math. 55(6), 1764–1781 (1995)

    Article  MathSciNet  Google Scholar 

  7. Faria, T., Röst, G.: Persistece, permaece ad global stability for a \(n\)-dimesional nicholson system. J. Dyn. Differ. Equ. 26(3), 723–744 (2014)

    Article  Google Scholar 

  8. Hofbauer, J., Iooss, G.: A Hopf bifurcation theorem for difference equations approximating a differential equation. Monatshefte für Mathematik 98(2), 99–113 (1984)

    Article  MathSciNet  Google Scholar 

  9. Hupkes, H.J., Van Vleck, E.S.: Negative diffusion and traveling waves in high dimensional lattice systems. SIAM J. Math. Anal. 45(3), 1068–1135 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hupkes, H.J., Van Vleck, E.S.: Travelling waves for complete discretizations of reaction diffusion systems. J. Dyn. Differ. Equ. 28(3–4), 955–1006 (2016)

    Article  MathSciNet  Google Scholar 

  11. Lancaster, P., Tismenetsky, M.: The Theory of Matrices: with Applications. Elsevier, Amsterdam (1985)

    Google Scholar 

  12. Letellier, C., Elaydi, S., Aguirre, L.A., Alaoui, A.: Difference equations versus differential equations, a possible equivalence for the Rössler system? Phys. D: Nonlinear Phenom. 195(1–2), 29–49 (2004)

    Google Scholar 

  13. Liu, L., Liu, Z.: Asymptotic behaviors of a delayed nonautonomous predator-prey system governed by difference equations. Discret. Dyn. Nat. Soc. 1–15, 2011 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Ma, S., Weng, P., Zou, X.: Asymptotic speed of propagation and traveling wavefronts in a non-local delayed lattice differential equation. Nonlinear Anal.: Theory, Methods Appl. 65(10), 1858–1890 (2006)

    Article  MathSciNet  Google Scholar 

  15. Martsenyuk, V., Kłos-Witkowska, A., Sverstiuk, A.: Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay. Electron. J. Qual. Theory Differ. Equ. 27, 1–31 (2018)

    Article  MathSciNet  Google Scholar 

  16. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994)

    Google Scholar 

  17. Mickens, R.E.: Advances in the Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2005)

    Book  Google Scholar 

  18. Nicholson, A.J., Bailey, V.A.: The balance of animal populations. part i. In: Proceedings of the Zoological Society of London, vol. 105, pp. 551–598. Wiley Online Library (1935)

    Google Scholar 

  19. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.S., Hasty, J.: A sensing array of radically coupled genetic ‘biopixels’. Nature 481(7379), 39–44 (2012)

    Article  Google Scholar 

  20. Schütze, A., Helwig, N., Schneider, T.: Sensors 4.0 – smart sensors and measurement technology enable industry 4.0. J. Sens. Sens. Syst. 7(1), 359–371 (2018)

    Article  Google Scholar 

  21. So, J.O.S.E.P.H.W.-H., Yu, J.S.: On the stability and uniform persistence of a discrete model of nicholson’s blowflies. J. Math. Anal. Appl. 193(1), 233–244 (1995)

    Article  MathSciNet  Google Scholar 

  22. Stehlík, P.: Exponential number of stationary solutions for nagumo equations on graphs. J. Math. Anal. Appl. 455(2), 1749–1764 (2017)

    Article  MathSciNet  Google Scholar 

  23. Stehlík, P., Volek, J.: Maximum principles for discrete and semidiscrete reaction-diffusion equation. Discret. Dyn. Nat. Soc. 2015, (2015)

    Google Scholar 

  24. Wang, L., Wang, M.Q.: Ordinary Difference Equation. Xinjiang University Press, Xinjiang, China (1989)

    Google Scholar 

  25. Wang, Z.-C., Li, W.-T., Jianhong, W.: Entire solutions in delayed lattice differential equations with monostable nonlinearity. SIAM J. Math. Anal. 40(6), 2392–2420 (2009)

    Article  MathSciNet  Google Scholar 

  26. Yang, X.: Uniform persistence and periodic solutions for a discrete predator-prey system with delays. J. Math. Anal. Appl. 316(1), 161–177 (2006)

    Article  MathSciNet  Google Scholar 

  27. Yi, T., Zou, X.: Global attractivity of the diffusive nicholson blowflies equation with neumann boundary condition: a non-monotone case. J. Differ. Equ. 245(11), 3376–3388 (2008)

    Article  MathSciNet  Google Scholar 

  28. Zhang, B.G., Xu, H.X.: A note on the global attractivity of a discrete model of nicholsonś blowflies. Discret. Dyn. Nat. Soc. 3(1), 51–55 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasyl Martsenyuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martsenyuk, V., Klos-Witkowska, A., Sverstiuk, A. (2020). Stability Investigation of Biosensor Model Based on Finite Lattice Difference Equations. In: Bohner, M., Siegmund, S., Šimon Hilscher, R., Stehlík, P. (eds) Difference Equations and Discrete Dynamical Systems with Applications. ICDEA 2018. Springer Proceedings in Mathematics & Statistics, vol 312. Springer, Cham. https://doi.org/10.1007/978-3-030-35502-9_13

Download citation

Publish with us

Policies and ethics