Skip to main content

Spatio-Temporal Data Interpretation Based on Perceptional Model

  • Chapter
  • First Online:
Advances in Spatio-Temporal Segmentation of Visual Data

Part of the book series: Studies in Computational Intelligence ((SCI,volume 876))

Abstract

This chapter describes approach to interpretation of the heterogeneous data from sensors based on a new perception model, that implement cognitive functions as abstraction of data, tracking context and switching attention. Based on fuzzy L-R numbers, the knowledge presentation and rules engine inference are introduced. The resilient and interoperability of the perception model is shown in two examples of interpretation heterogeneous spatio-temporal data from sensors about the situation at the intersection and about the navigable path between landmarks of the robot route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mintchell G (2016) Industry 4.0 Survey: building the digital enterprise. www.themanufacturingconnection.com/2016/09/industry-4-0-survey-building-digital-enterprise. Accessed 25 Jan 2019

  2. Ploennigs J, Cohn J, Stanford-Clark (2018) A The future of IoT. IEEE Internet Things Mag 1(1):28–33. https://www.comsoc.org/system/files/2018-10/IOTMAG_2018_Sep.pdf. Accessed 25 Jan 2019

    Article  Google Scholar 

  3. Fan X (2015) Real-time embedded systems design principles and engineering practices. Elsevier, 662p

    Google Scholar 

  4. Perez J (2017) Artificial intelligence and robotics. https://arxiv.org/ftp/arxiv/papers/1803/1803.10813.pdf. Accessed 28 Jan 2019

  5. UK-RAS Conference Proceedings (2018) J Robot Auton Syst 1(1). https://www.ukras.org/wp-content/uploads/2018/10/UK-RAS-Proceedings-2017.pdf. Accessed 28 Jan 2019

  6. Buntz B (2017) An executive’s guide to Industry 4.0, Smart Factories and beyond. www.ioti.com/industrial-iot-iiot/executive-s-guide-industry-40-smart-factories-and-beyond. Accessed 25 Jan 2019

  7. IEEE Computer Society Predicts the Future of Tech: Top 10 Technology Trends for 2019. 19 Dec 2018. https://www.computer.org/web/computingnow/insights/content?g=53319&type=article&urlTitle=ieee-computer-society-predicts-the-future-of-tech-top-10-technology-trends-for-2019. Accessed 25 Jan 2019

  8. Rail Technical Strategy Capability Delivery Plan (2017). https://www.rssb.co.uk/rts/Documents/2017-01-27-rail-technical-strategy-capability-delivery-plan-brochure.pdf. Accessed 25 Jan 2019

  9. Plinninger T, Hildebrandt A (2017) Comfortable rail travel. Ansys Adv 1:18–23

    Google Scholar 

  10. Fraga-Lamas P at al (2017) Towards the Internet of Smart Trains: a review on Industrial IoT-connected railways. Sensors 17(6). https://doi.org/10.3390/s17061457. Accessed 28 Jan 2019

  11. Tracy P (2017) Smart trains and the connected railway. https://www.ibm.com/blogs/internet-of-things/smart-trains-connected-railway/. Accessed 25 Jan 2019

  12. Duarte F, Ratti C (2018) The impact of autonomous vehicles on cities: a review. J Urban Technol 25(4). https://doi.org/10.1080/10630732.2018.1493883. Accessed 28 Jan 2019

    Article  Google Scholar 

  13. Moon M (2019) NVIDIA’s new lab aims to develop robotic breakthroughs. https://www.engadget.com/2019/01/12/nvidia-robotics-research-lab/. Accessed 25 Jan 2019

  14. Liu D, Wang L, Tan KC (2009) Design and control of intelligent robotic systems. Stud Comput Intel 478

    Google Scholar 

  15. Hansen S, Blanke M, Andersen J (2009) Autonomous tractor navigation in orchard—diagnosis and supervision for enhanced availability. In: Proceedings of 7th IFAC symposium on fault detection, supervision and safety of technical processes, vol 42, issue no. 8. Barcelona, Spain, June 30–July 3, pp 360–365

    Article  Google Scholar 

  16. Arvanitakis I, Tzes A, Giannousakis K (2018) Synergistic exploration and navigation of mobile robots under pose uncertainty in unknown environments. Int J Adv Robot Syst 15(1). https://doi.org/10.1177/1729881417750785. Accessed 25 Jan 2019

    Article  Google Scholar 

  17. Pandey A, Pandey S, Parhi DR (2017) Mobile robot navigation and obstacle avoidance techniques: a review. Int Rob Auto J 2(3):00022. https://doi.org/10.15406/iratj.2017.02.00023. Accessed 25 Jan 2019

  18. Bradshaw JM et al (2013) The seven deadly myths of “autonomous systems”. IEEE Intel Syst 54–61

    Article  Google Scholar 

  19. White paper. Observations and recommendations on connected vehicle security 2017. Cloud Secur Alliance. https://cloudsecurityalliance.org/download/connected-vehicle-security. Accessed 25 Jan 2019

  20. Deng Q, Runger G, Tuv E (2012) System monitoring with real-time contrasts. Q J Meth Appl Relat Top 44(1):9–27. https://doi.org/10.1080/00224065.2012.11917878. Accessed 25 Jan 2019

    Article  Google Scholar 

  21. Hu H, Brady JM, Du F, Probert PJ (1995) Distributed real-time control of a mobile robot. Intel Autom Soft Comput 1(1):63–83. https://doi.org/10.1080/10798587.1995.10750621. Accessed 25 Jan 2019

    Article  Google Scholar 

  22. Munera E et al (2017) Distributed real-time control architecture for ROS-based modular robots. IFAC 50–1:11233–11238. https://doi.org/10.1016/j.ifacol.2017.08.1600. Accessed 25 Jan 2019

    Article  Google Scholar 

  23. Kargin A et al (2018) A polygon for smart machine application. In: 2018 IEEE 9th international conference on Dependable Systems, Services and Technologies (DESSERT 2018), Ukraine, Kyiv, 24–27 May 2018, pp 489–494

    Google Scholar 

  24. Boano CA et al (2016) Dependability for the Internet of Things—from dependable networking in harsh environments to a holistic view on dependability. e & i Elektrotechnik und Informationstechnik 133(7):304–309. https://link.springer.com/article/10.1007/s00502-016-0436-4. Accessed 25 Jan 2019

  25. Liu D et al (2009) Design and control of intelligent robotic system. Stud Comput Intell, 480 p

    Google Scholar 

  26. Alippi C (2014) Intelligence for embedded systems: a methodological approach. Springer, 283p

    Google Scholar 

  27. Davenport TH, Kirby J (2016) Just how smart are smart machines? MIT Sloan Manag Rev 57(3):21–25. http://ilp.mit.edu/media/news_articles/smr/2016/57306.pdf. Accessed 25 Jan 2019

  28. Naujoks F, Kiesel A, Neukum J (2016) Cooperative warning systems: The impact of false and unnecessary alarms on drivers’ compliance. Accid Anal Prev 97:162–175. https://doi.org/10.1016/j.aap.2016.09.009. Accessed 28 Jan 2019

    Article  Google Scholar 

  29. Kargin A, Petrenko T (2018) Internet of Things smart rules engine. In: 2018 international scientific-practical conference on Problems of Infocommunications. Science and Technology (PIC S&T 2018), Ukraine, Kharkiv, pp 639–644

    Google Scholar 

  30. Qanbari S et al (2016) IoT design patterns: computational constructs to design, build and engineer edge applications. In: 2016 IEEE first international conference on Internet-of-Things design and implementation, pp 277–282. http://www.infosys.tuwien.ac.at/Staff/sd/papers/I4T_2016_S_Qanbari.pdf. Accessed 25 Jan 2019

  31. Pizurica V (2017) The Waylay engine, Part 1: one rules engine to rule them all. https://blog.waylay.io/waylay-engine-one-rules-engine-to-rule-them-all/. Accessed 25 Jan 2019

  32. Sottara D et al (2010) A configurable rete-OO engine for reasoning with different types of imperfect information. IEEE Trans Knowl Data Eng 22(11):1535–1548

    Article  Google Scholar 

  33. Koster M (2014) design patterns for an internet of things—a design pattern framework for IoT architecture. http://iot-datamodels.blogspot.in/2014/05/design-patterns-for-internet-of-things.html. Accessed 25 Jan 2019

  34. Gorbach G (2016) Five application patterns for the IoT Cloud. https://www.arcweb.com/blog/five-application-patterns-iot-cloud. Accessed 27 Jan 2019

  35. Negnevitsky M (2005) Artificial intelligence: a guide to intelligent systems, 2nd edn. Addison-Wesley, 415 p

    Google Scholar 

  36. Amazon Web Services (2018) AWS IoT developer guide. Rules for AWS IoT. https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf#iot-rules. Accessed 25 Jan 2019

  37. Russell SJ, Norvig P (2010) Artificial intelligence a modern approach, 3rd edn. Pearson Education, 1151 p

    Google Scholar 

  38. Piegat A (2001) Fuzzy modelling and control. Physica-Verlag, 728p

    Google Scholar 

  39. Mendel JM (2017) Uncertain rule-based fuzzy systems: introduction and new directions, 2nd edn. Springer, 684p

    Google Scholar 

  40. Merrick K (2017) Value systems for developmental cognitive robotics: a survey. Cogn Syst Res 41:38–55

    Article  Google Scholar 

  41. Langley P, Laird JE, Rogers S (2009) Cognitive architectures: Research issues and challenges. Cogn Syst Res 10(2):141–160. https://doi.org/10.1016/j.cogsys.2016.08.001. Accessed 27 Jan 2019

    Article  Google Scholar 

  42. Asada M (2009) Cognitive developmental robotics: a survey. IEEE Trans Auton Mental Dev 1(1):12–34. http://www.ece.uvic.ca/~bctill/papers/ememcog/Asada_etal_2009.pdf. Accessed 25 Jan 2019

    Article  Google Scholar 

  43. Solso RM, MacLin OH, MacLin MK (2004) Cognitive psychology, 7th edn. Allyn & Bacon, 624 p

    Google Scholar 

  44. Anderson JR (2009) Cognitive psychology and its implications, 7th edn. Worth Publishers, 469p

    Google Scholar 

  45. Schiffman HR (2001) Sensation and perception. An integrated approach, 5th edn. Wiley, 608p

    Google Scholar 

  46. Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst 90(2):111–127

    Article  MathSciNet  MATH  Google Scholar 

  47. Zadeh LA (2015) Toward a restriction-centered theory of truth and meaning (RCT). In: Magdalena L, Verdegay J, Esteva F (eds) Enric Trillas: a passion for fuzzy sets. A collection of recent works on fuzzy logic. Springer, pp 1–22

    Google Scholar 

  48. Mendel JM, Wu D (2010) Perceptual computing: adding people in making subjective judgments. Wiley, 320 p

    Google Scholar 

  49. Clancey WJ (1985) Heuristic classification. Artif Intell 27(3):289–350. https://doi.org/10.1016/0004-3702(85)90016-5. Accessed 27 Jan 2019

    Article  Google Scholar 

  50. Chandrasekaran B (1986) Generic tasks in knowledge-based reasoning: high-level building blocks for expert systems design. IEEE Expert 1(3):23–30

    Article  Google Scholar 

  51. Jackson P (1998) Introduction to expert systems, 3rd edn. Addison-Wesley, 560 p

    Google Scholar 

  52. Saba WS (2006) Ontology, types and semantics. In: Proceedings of the 3rd international workshop on natural language understanding and cognitive science, pp 17–26. https://doi.org/10.5220/0002472300170026. Accessed 25 Jan 2019

  53. Saba WS (2007) Ontology and formal semantics (integration overdue). https://arxiv.org/ftp/arxiv/papers/0712/0712.1529.pdf. Accessed 25 Jan 2019

  54. Yao YY (2008) A unified framework of granular computing. Handbook of granular computing. Wiley, Hoboken, pp 401–410

    Chapter  Google Scholar 

  55. Pedrycz W, Chen S (2011) Granular computing and intelligent systems design with information granules of higher order and higher type. Springer, 305 p

    Google Scholar 

  56. Skowron A, Jankowski A, Dutta S (2015) Toward problem solving support based on big data and domain knowledge: Interactive granular computing and adaptive judgement. In: Big data analysis: new algorithms for a new society. Springer, pp 49–90

    Google Scholar 

  57. Skowron A (2016) Interactive granular computing. Granular Computing 1(2):95–113

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu A (2016) Rule-based systems: a granular computing. Granular Comput 1:259–274

    Article  Google Scholar 

  59. Hirsch P, Nolden S, Declerck M, Koch I (2018) Common cognitive control processes underlying performance in task-switching and dual-task contexts. Adv Cogn Psychol 14(3):62–74. http://www.ac-psych.org/en/issues/volume/14/issue/3. Accessed 25 Jan 2019

    Article  Google Scholar 

  60. Luger GF (2009) Artificial intelligence: structures and strategies for complex problem solving, 6th edn. Addison-Wesley, 754 p

    Google Scholar 

  61. Tung WL, Quek C (2010) eFSM—a novel online neural-fuzzy semantic memory model. IEEE Trans Neural Netw 21(1):136–157

    Article  Google Scholar 

  62. de Barros LC et al (2017) The extension principle of Zadeh and fuzzy numbers. In: A first course in fuzzy logic, fuzzy dynamical systems, and biomathematics, studies in fuzziness and soft computing, vol 347. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53324-6_2. Accessed 28 Jan 2019

    MATH  Google Scholar 

  63. Zadeh LA (2006) Generalized theory of uncertainty (GTU)—principal concept and ideas. Comput Stat Data Anal 51(1):15–46

    Article  MathSciNet  MATH  Google Scholar 

  64. Doctor F, Hagras H, Callaghan V (2005) A fuzzy embedded agent-based approach for realizing ambient intelligence in intelligent inhabited environments. IEEE Trans Syst Man Cybern Part A Syst Hum 35(1):55–65. https://doi.org/10.1109/TSMCA.2004.838488. Accessed 25 Jan 2019

    Article  Google Scholar 

  65. Kargin A, Panchenko S, Vasiljevs A, Petrenko T (2019) Implementation of cognitive perception functions in fuzzy situational control model. In: ICTE in transport and logist. 2018 (ICTE 2018). Procedia Comput Sci Elsevier 149:231–238

    Article  Google Scholar 

  66. Abafogi M, Durdu A, Akdemir B (2018) A new approach to mobile robot navigation in unknown environments. In: ECAI 2018 international conference. 10th edition electronics, computers and artificial intelligence. 28–30 June 2018, Iasi, România. https://www.researchgate.net/publication/329523524_A_New_Approach_to_Mobile_Robot_Navigation_in_Unknown_Environments. Accessed 25 Jan 2019

  67. Pilania V, Gupta K (2018) Mobile manipulator planning under uncertainty in unknown environments. Int J Rob Reaches. https://doi.org/10.1177/0278364918754677. Accessed 25 Jan 2019

    Article  Google Scholar 

  68. Zaitseva E, Levashenko V (2016) Construction of a reliability structure function based on uncertain data. IEEE Trans Reliab 65(4):1710–1723. https://doi.org/10.1109/TR.2016.2578948

    Article  Google Scholar 

  69. Levashenko V, Zaitseva E, Puuronen S (2002) Usage of new information estimations for induction of fuzzy decision trees, lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 2412. In: Proceedings of the 3rd International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2002), pp 493–499

    Chapter  Google Scholar 

  70. Johansson (2018) A machine learning is bad at context. Here’s how we fix it. https://www.computer.org/web/computingnow/insights/content?g=53319&type=article&urlTitle=machine-learning-is-bad-at-context-here-s-how-we-fix-it-. Accessed 25 Jan 2019

  71. Jirak D, Wermter S (2018) Potentials and limitations of deep neural networks for cognitive robots. https://arxiv.org/abs/1805.00777. Accessed 25 Jan 2019

  72. Sünderhauf N et al (2018) The limits and potentials of deep learning for robotics. https://arxiv.org/pdf/1804.06557.pdf. Accessed 25 Jan 2019

  73. Murphy RR, Arkin RC (2000) Introduction to AI Robotics (Intelligent Robotics and Autonomous Agents). A Bradford Book, 487 p

    Google Scholar 

  74. Morioka K, Lee J, Hashimoto H (2002) Intelligent space for human centered robotics service robots. In: Proceedings 2002 IEEE international conference on robotics and automation. https://doi.org/10.1109/ROBOT.2002.1014836. Accessed 27 Jan 2019

  75. Grisetti G at al (2010) A tutorial on graph-based SLAM. IEEE Intell Transp Syst Mag 2(4):31–43. https://doi.org/10.1109/MITS.2010.939925. Accessed 27 Jan 2019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii Kargin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kargin, A., Petrenko, T. (2020). Spatio-Temporal Data Interpretation Based on Perceptional Model. In: Mashtalir, V., Ruban, I., Levashenko, V. (eds) Advances in Spatio-Temporal Segmentation of Visual Data. Studies in Computational Intelligence, vol 876. Springer, Cham. https://doi.org/10.1007/978-3-030-35480-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35480-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35479-4

  • Online ISBN: 978-3-030-35480-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics