Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 239))

Abstract

These lecture notes are devoted to studying the Kondo problem from the perspective of gauge/gravity duality. This duality is a major recent development within theoretical physics. It maps strongly coupled quantum systems to weakly coupled gravity theories and thus provides a new approach to their description. The Kondo model as originally proposed by J. Kondo in 1961 played a decisive role in the development of major concepts in quantum field theory, such as the renormalization group and the use of conformal symmetry. It describes describes a spin impurity interacting with a free electron gas: At low energies, the impurity is screened and there is a logarithmic rise of the resistivity. In quantum field theory, this amounts to a negative beta function for the impurity coupling and the theory flows to a non-trivial IR fixed point. In these lectures we construct and examine a variant of the Kondo model within gauge/gravity duality. The motivation is twofold: On the one hand, the model may be used for calculating observables for the case of a spin impurity interacting with a strongly correlated electron gas. On the other hand, the models allows for new insights into the working mechanisms of gauge/gravity duality. For constructing the gravity dual, we consider a version of the Kondo model with SU(N) spin at large N, in which the ambient electrons are strongly coupled even before the interaction with the impurity is switched on. We present the brane construction which motivates a gravity dual Kondo model and use this model to calculate the impurity entanglement entropy. The resistivity has a power-law behaviour in this model. We also study quantum quenches, and discuss the relation to the Sachdev-Ye-Kitaev model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A review of the group theory concepts mentioned here may for instance be found in Appendix B of [13].

References

  1. S. Coleman, Quantum sine-Gordon equation as the massive Thirring model. Phys. Rev. D11, 2088–2097 (1975). https://doi.org/10.1103/PhysRevD.11.2088

    Article  ADS  Google Scholar 

  2. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999). arXiv:hep-th/9711200 [hep-th]. [Adv. Theor. Math. Phys. 2, 231 (1998)]

  3. G.’t. Hooft, Dimensional reduction in quantum gravity. Conf. Proc. C930308, 284–296 (1993). arXiv:gr-qc/9310026 [gr-qc]

  4. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995). arxiv: hep-th/9409089

    Article  ADS  MathSciNet  Google Scholar 

  5. J.D. Bekenstein, Black holes and entropy. Phys. Rev. D7, 2333–2346 (1973). https://doi.org/10.1103/PhysRevD.7.2333

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Kondo, Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32(1), 37–49 (1964)

    Article  ADS  Google Scholar 

  7. I. Affleck, Conformal field theory approach to the Kondo effect. Acta Phys. Polon. B26, 1869–1932 (1995). arXiv:cond-mat/9512099 [cond-mat]

  8. N. Andrei, Diagonalization of the Kondo Hamiltonian. Phys. Rev. Lett. 45, 379–382 (1980)

    Article  ADS  Google Scholar 

  9. P. Wiegmann, Towards an exact solution of the Anderson model. Phys. Lett. A 80, 163–167 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  10. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008). arXiv:0803.3295 [hep-th]

  11. J. Erdmenger, Introduction to gauge/gravity duality. PoS TASI2017, 001 (2018). https://doi.org/10.22323/1.305.0001. arXiv:1807.09872 [hep-th]

  12. N. Andrei et al., Boundary and defect CFT: open problems and applications. arXiv:1810.05697 [hep-th]

  13. M. Ammon, J. Erdmenger, Gauge/Gravity Duality: Foundations and Applications (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  14. H. Nastase, Introduction to the ADS/CFT Correspondence (Cambridge University Press, 2015)

    Google Scholar 

  15. M. Natsuume, AdS/CFT duality user guide. textitLect. Notes Phys. 903, 1–294 (2015).https://doi.org/10.1007/978-4-431-55441-7, arXiv:1409.3575 [hep-th]

    Book  Google Scholar 

  16. J. Casalderrey-Solana, H. Liu, K. Mateos, D. Rajagopal, U. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge University Press, Cambridge, 2014). https://doi.org/10.1017/CBO9781139136747

  17. J. Zaanen, Y.-W. Sun, Y. Liu, K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  18. P.S. Howe, K.S. Stelle, P.C. West, A class of finite four-dimensional supersymmetric field theories. Phys. Lett. 124B, 55–58 (1983). https://doi.org/10.1016/0370-2693(83)91402-8

    Article  ADS  Google Scholar 

  19. P.S. Howe, K.S. Stelle, P.K. Townsend, Miraculous ultraviolet cancellations in supersymmetry made manifest. Nucl. Phys. B236, 125–166 (1984). https://doi.org/10.1016/0550-3213(84)90528-5

    Article  ADS  MathSciNet  Google Scholar 

  20. G. ’t Hooft, A planar diagram theory for strong interactions. Nucl. Phys. B72, 461 (1974); 337(1973)]. https://doi.org/10.1016/0550-3213(74)90154-0

    Article  ADS  Google Scholar 

  21. D.Z. Freedman, S.D. Mathur, A. Matusis, L. Rastelli, Correlation functions in the CFT(d) / AdS(d+1) correspondence. Nucl. Phys. B546, 96–118 (1999). arXiv:hep-th/9804058 [hep-th]

  22. S. Lee, S. Minwalla, M. Rangamani, N. Seiberg, Three point functions of chiral operators in D = 4, N=4 SYM at large N. Adv. Theor. Math. Phys. 2, 697–718 (1998). arXiv:hep-th/9806074 [hep-th]

  23. H.J. Kim, L.J. Romans, P. van Nieuwenhuizen, The mass spectrum of chiral N=2 D=10 supergravity on S**5. Phys. Rev. D32, 389 (1985). https://doi.org/10.1103/PhysRevD.32.389

    Article  ADS  MathSciNet  Google Scholar 

  24. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B428, 105–114 (1998). arXiv:hep-th/9802109 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  26. S.S. Gubser, I.R. Klebanov, A.W. Peet, Entropy and temperature of black 3-branes. Phys. Rev. D54, 3915–3919 (1996). https://doi.org/10.1103/PhysRevD.54.3915. arXiv:hep-th/9602135 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  27. I. Affleck, A.W.W. Ludwig, The Kondo effect, conformal field theory and fusion rules. Nucl. Phys. B 352, 849–862 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  28. N. Read, D.M. Newns, On the solution of the Coqblin-Schrieffer Hamiltonian by the large-N expansion technique. J. Phys. C: Solid State Phys. 16(17), 3273 (1983)

    Article  ADS  Google Scholar 

  29. P. Coleman, N. Andrei, Diagonalisation of the generalised Anderson model. J. Phys. C: Solid State Phys. 19(17), 3211 (1986)

    Article  ADS  Google Scholar 

  30. S. Harrison, S. Kachru, G. Torroba, A maximally supersymmetric Kondo model. Class. Quant. Grav. 29, 194005 (2012). arXiv:1110.5325 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  31. P. Benincasa, A.V. Ramallo, Holographic kondo model in various dimensions. JHEP 06, 133 (2012). arXiv:1204.6290 [hep-th]

  32. J. Erdmenger, C. Hoyos, A. O’Bannon, J. Wu, A holographic model of the kondo effect. JHEP 12, 086 (2013). arXiv:1310.3271 [hep-th]

  33. E.I. Buchbinder, J. Gomis, F. Passerini, Holographic gauge theories in background fields and surface operators. JHEP 12, 101 (2007). arXiv:0710.5170 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  34. J.A. Harvey, A.B. Royston, Gauge/gravity duality with a chiral N=(0,8) string defect. JHEP 08, 006 (2008). arXiv:0804.2854 [hep-th]

  35. P. Breitenlohner, D.Z. Freedman, Stability in gauged extended supergravity. Ann. Phys. 144, 249 (1982). https://doi.org/10.1016/0003-4916(82)90116-6

    Article  ADS  MathSciNet  Google Scholar 

  36. E. Witten, Multitrace operators, boundary conditions, and AdS / CFT correspondence. arXiv:hep-th/0112258 [hep-th]

  37. O. Aharony, M. Berkooz, E. Silverstein, Multiple trace operators and nonlocal string theories. JHEP 08, 006 (2001). arXiv:hep-th/0105309 [hep-th]

    Article  MathSciNet  Google Scholar 

  38. J.M. Luttinger, An exactly soluble model of a many-fermion system. J. Math. Phys. 4(9), 1154–1162 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001 [hep-th]

  40. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P06002 (2004). arXiv:hep-th/0405152 [hep-th]

    Article  MathSciNet  Google Scholar 

  41. J. Erdmenger, M. Flory, M.-N. Newrzella, Bending branes for DCFT in two dimensions. JHEP 01, 058 (2015). arXiv:1410.7811 [hep-th]

  42. J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, J.M.S. Wu, Entanglement entropy in a holographic kondo model. Fortsch. Phys. 64, 109–130 (2016). arXiv:1511.03666 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  43. W. Israel, Singular hypersurfaces and thin shells in general relativity. Nuovo Cim. B44S10, 1 (1966). [Nuovo Cim. B44,1 (1966)]

    Article  Google Scholar 

  44. E.S. Sørensen, M.-S. Chang, N. Laflorencie, I. Affleck, Quantum impurity entanglement. J. Stat. Mech.: Theory Exp. 2007(08), P08003 (2007)

    Article  MathSciNet  Google Scholar 

  45. E. Eriksson, H. Johannesson, Impurity entanglement entropy in kondo systems from conformal field theory. Phys. Rev. B 84, 041107 (2011)

    Google Scholar 

  46. J. Erdmenger, M. Flory, M.-N. Newrzella, M. Strydom, J.M.S. Wu, Quantum quenches in a holographic kondo model. arXiv:1612.06860 [hep-th]

  47. D.T. Son, A.O. Starinets, Minkowski space correlators in AdS / CFT correspondence: recipe and applications. JHEP 09, 042 (2002). arXiv:hep-th/0205051 [hep-th]

    Article  MathSciNet  Google Scholar 

  48. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS / CFT correspondence. Commun. Math. Phys. 217, 595–622 (2001). arXiv:hep-th/0002230 [hep-th]

  49. J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst, J.M.S. Wu, Holographic kondo and fano resonances. Phys. Rev. D 96(2), 021901 (2017). arXiv:1611.09368 [hep-th]

  50. J. Erdmenger, C. Hoyos, A. O’Bannon, I. Papadimitriou, J. Probst, J.M.S. Wu, Two-point functions in a holographic kondo model. JHEP 03, 039 (2017). arXiv:1612.02005 [hep-th]

  51. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  ADS  Google Scholar 

  52. O. Parcollet, A. Georges, G. Kotliar, A. Sengupta, Overscreened multichannel SU(N) kondo model: large-N solution and conformal field theory. Phys. Rev. B58(7), 3794 (1998). arXiv:cond-mat/9711192 [cond-mat.str-el]

    Article  ADS  Google Scholar 

  53. P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, Cambridge, 2015)

    Google Scholar 

  54. S. Sachdev, J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339 (1993). arXiv:cond-mat/9212030 [cond-mat]

    Article  ADS  Google Scholar 

  55. J. Maldacena, D. Stanford, Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016). arXiv:1604.07818 [hep-th]

  56. A. Georges, O. Parcollet, S. Sachdev, Quantum fluctuations of a nearly critical heisenberg spin glass. Phys. Rev. B 63, 134406 (2001)

    Google Scholar 

  57. S. Sachdev, Bekenstein-Hawking entropy and strange metals. Phys. Rev. X 5(4), 041025 (2015). arXiv:1506.05111 [hep-th]

Download references

Acknowledgements

I am very grateful to my collaborators Mario Flory, Carlos Hoyos, Max-Niklas Newrzella, Andy O’Bannon, Ioannis Papadimitriou, Jonas Probst and Jackson Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Erdmenger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Erdmenger, J. (2020). Holographic Kondo Models. In: Ferraz, A., Gupta, K., Semenoff, G., Sodano, P. (eds) Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory. Springer Proceedings in Physics, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-35473-2_6

Download citation

Publish with us

Policies and ethics