Skip to main content

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 239))

  • 1117 Accesses

Abstract

An exponential deformation of a 1D critical Hamiltonian, with couplings falling on a length scale \(h^{-1}\), gives rise to ground states whose entanglement entropy follows a volume law, i.e. the area law is violated maximally. The ground state is now in the so-called rainbow phase, where valence bonds connect sites on the left half with their symmetric counterparts on the right. Here we discuss some of the most relevant features of this rainbow phase, focusing on the XX and Heisenberg models. Moreover, we show that the rainbow state can be understood either as a thermo-field double of a conformal field theory with a temperature proportional to h or as a massless Dirac fermion in a curved spacetime with constant negative curvature proportional to h. Finally, we introduce a study of the time-evolution of the rainbow state after a quench to a homogeneous Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Baxter, Phys. A. 106(1–2), 18 (1981)

    Google Scholar 

  2. C. Gómez, M. Ruiz-Altaba, G. Sierra, Quantum Groups in Two-Dimensional Physics. Cambridge Lecture Notes in Physics (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  3. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  4. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Adv. Phys. 56(2), 243 (2007)

    Google Scholar 

  5. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt College Publishers, San Diego, 1976)

    Google Scholar 

  6. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  7. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  8. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  9. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  11. L. Fu, C.L. Kane, Phys. Rev. B 76, 045302 (2007)

    Google Scholar 

  12. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  13. M. Lewenstein, A. Sanpera, V. Ahufinger, Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford University Press, Oxford, 2012)

    Google Scholar 

  14. E. Schmidt, Math. Ann. 63(4), 433 (1907)

    Google Scholar 

  15. C. Shannon, Bell Syst. Tech. J. 27(3), 379 (1948)

    Google Scholar 

  16. G. Vitagliano, A. Riera, J.I. Latorre, New J. Phys. 12(11), 113049 (2010)

    Article  ADS  Google Scholar 

  17. K. Okunishi, T. Nishino, Phys. Rev. B 82, 144409 (2010)

    Google Scholar 

  18. H. Ueda, H. Nakano, K. Kusakabe, T. Nishino, Progr. Theor. Phys. 124(3), 389 (2010)

    Google Scholar 

  19. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  20. G. Ramírez, J. Rodríguez-Laguna, G. Sierra, J. Stat. Mech. 2014(10), P10004 (2014)

    Article  Google Scholar 

  21. B. Jin, V. Korepin, J. Stat. Phys. 116, 79 (2004)

    Google Scholar 

  22. G. Ramírez, J. Rodríguez-Laguna, G. Sierra, J. Stat. Mech. 2015(6), P06002 (2015)

    Article  MathSciNet  Google Scholar 

  23. P. Calabrese, J. Cardy, J. Stat. Mech. 2004(06), P06002 (2004)

    Google Scholar 

  24. E. Tonni, J. Rodríguez-Laguna, G. Sierra, J. Stat. Mech. 2018(4), 043105 (2018)

    Article  Google Scholar 

  25. J. Rodríguez-Laguna, J. Dubail, G. Ramírez, P. Calabrese, G. Sierra, J. Stat. Mech. 50(16), 164001 (2017)

    Google Scholar 

  26. J. Dubail, J.M. Stéphan, J. Viti, P. Calabrese, SciPost Phys. 2, 002 (2017)

    Google Scholar 

  27. G. Ramírez, J. Rodríguez-Laguna, G. Sierra, Quenched dynamics of valence bond states. Work in progress

    Google Scholar 

  28. E.H. Lieb, D.W. Robinson, Commun. Math. Phys. 28(3), 251 (1972)

    Google Scholar 

  29. B. Alkurtass, L. Banchi, S. Bose, Phys. Rev. A 90, 042304 (2014)

    Google Scholar 

  30. I. Pitsios, L. Banchi, A.S. Rab, M. Bentivegna, D. Caprara, A. Crespi, N. Spagnolo, S. Bose, P. Mataloni, R. Osellame, F. Sciarrino, Nat. Commun. 8, 1569 (2017)

    Google Scholar 

  31. P. Calabrese, J. Cardy, J. Stat. Mech. 2005(04), P04010 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Pasquale Sodano for organising the conferences hosted at the International Institute of Physics (Natal) and for his efforts to collect the contributions for the Proceedings. We would also like to thank Silvia N. Santalla for useful conversations. We acknowledge financial support from the grants FIS2015-69167-C2-1-P, QUITEMAD+ S2013/ICE-2801 and SEV-2016-0597.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez, G., Rodríguez-Laguna, J., Sierra, G. (2020). Breaking the Area Law: The Rainbow State. In: Ferraz, A., Gupta, K., Semenoff, G., Sodano, P. (eds) Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory. Springer Proceedings in Physics, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-35473-2_19

Download citation

Publish with us

Policies and ethics