Skip to main content

Abstract

Customary approaches in allometric examination include linear regression in geometrical space, as well as, nonlinear regression in the original scale of data. These protocols could not produce consistent results in a circumstance in which the allometric response manifest heterogeneity as the covariate changes. The paradigm of log-nonlinear allometry offers a mechanism for the analysis of heterogeneity in geometric space. However, the use of a logarithmic transformation in allometry is controversial. In this contribution, we present a fuzzy approach aimed to examination of allometric heterogeneity in direct arithmetical space. Offered construct relies on a hybrid procedure integrating crisp cluster analysis and a fuzzy inference system of Mamdani type. Calibration aims depended on an extensive data set composing measurements of eelgrass leaf biomass and their corresponding areas. Results on raw data suggest heterogeneity more clearly manifest in the normalization constant than in the allometric exponent. Nevertheless, differences in normalization constant values among clusters are only slight for data remaining after removal of inconsistent replicates. This suggests heterogeneity produced by intrinsic factors of leaf growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newman, M.E.J.: Power laws, pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)

    Article  Google Scholar 

  2. Marquet, P.A., Quiñones, R.A., Abades, S., Labra, F., Tognelli, M.: Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005)

    Article  Google Scholar 

  3. West, G.B., Brown, J.H.: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005)

    Article  Google Scholar 

  4. Maritan, A., Rigon, R., Banavar, J.R., Rinaldo, A.: Network allometry. Geophys. Res. Lett. 29(11), 1–4 (2002)

    Article  Google Scholar 

  5. Filgueira, R., Labarta, U., Fernández-Reiriz, M.J.: Effect of condition index on allometric relationships of clearance rate in mytilus galloprovincialis lamarck, 1819. Rev. Biol. Mar. Oceanogr. 43(2), 391–398 (2008)

    Article  Google Scholar 

  6. Kaitaniemi, P.: How to derive biological information from the value of the normalization constant in allometric equations. PLoS One 3(4), e1932 (2008)

    Article  Google Scholar 

  7. Martin, R.D., Genoud, M., Hemelrijk, C.K.: Problems of allometric scaling analysis: examples from mammalian reproductive Biology. J. Exp. Biol. 208, 1731–1747 (2005)

    Article  Google Scholar 

  8. De Robertis, A., Williams, K.: Weight-length relationships in fisheries studies: the standard allometric model should be applied with caution. Trans. Am. Fish. Soc. 137(3), 707–719 (2008)

    Article  Google Scholar 

  9. Echavarría-Heras, H.A., Leal-Ramírez, C., Villa-Diharce, E., Cazarez-Castro, N.R.: The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.) II: the importance of data quality control procedures in bias reduction. Theor. Biol. Med. Model. 12(30) (2015)

    Google Scholar 

  10. García-Soria, D., Abanto-Rodriguez, A., Del Castillo, D.: Determinación de ecuaciones alométricas para la estimación de biomasa aérea de Guadua sacocarpa Lodoño & Peterson de la comunidad nativa bufeo pozo, Ucayali, Perú. Folia Amazonica 24(2) 139–144 (2015)

    Google Scholar 

  11. Echavarría Heras, H.A., Leal Ramírez, C., Villa Diharce, E., Cazarez Castro, N.R.: On the suitability of an allometric proxy for nondestructive estimation of average leaf dry weight in eelgrass shoots I: sensitivity analysis and examination of the influences of data quality, analysis method, and sample size on precision. Theoret. Biol. Med. Model. 15(4), 20 (2018)

    Google Scholar 

  12. Solana-Arellano, M.E., Echavarría-Heras, H.A., Leal-Ramírez, C., Lee, K.S.: The effect of parameter variability in the allometric projection of leaf growth rates for eelgrass (Zostera marina L.). Lat. Am. J. Aquat. Res. 42(5), 1099–108 (2014)

    Article  Google Scholar 

  13. Echavarría-Heras, H.A., Lee, K.S., Solana-Arellano, M.E., Franco-Vizcaino, E.: Formal analysis and evaluation of allometric methods for estimating above-ground biomass of eelgrass. Ann. Appl. Biol. 159(3), 503–515 (2011)

    Article  Google Scholar 

  14. Echavarría-Heras, H.A., Solana-Arellano, M.E., Franco-Vizcaino, E.: An allometric method for the projection of eelgrass leaf biomass production rates. Math. Biosci. 223(1), 58–65 (2010)

    Article  MathSciNet  Google Scholar 

  15. Savage, V.M., Gillooly, J.F., Woodruff, W.H., West, G.B., Allen, A.P.: The predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004)

    Article  Google Scholar 

  16. Hui, D., Jackson, R.B.: Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J. Theor. Biol. 249, 168–177 (2007)

    Article  MathSciNet  Google Scholar 

  17. Packard, G.C., Birchard, G.F.: Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J. Exp. Biol. 211, 3581–3587 (2008)

    Article  Google Scholar 

  18. Packard, G.C.: Is non-loglinear allometry a statistical artifact? Biol. J. Lin. Soc. 107(4), 764–773 (2012)

    Article  Google Scholar 

  19. Hartnoll, R.G.: The determination of relative growth in Crustacea. Crustaceana 34(3), 282–293 (1978)

    Article  Google Scholar 

  20. Barradas, J.R.S., Lermen, I.S., Larre, G.G., Martins, T.P., Fontura, N.F.: Polyphasic growth in fish: a case study with Corydoras paleatus (Siluriformes, Callichthyidae). Ser. Zool, Iheringia (2016)

    Google Scholar 

  21. Packard, G.C., Boardman, T.J.: Model selection and logarithmic transformation in allometric analysis. Physiol. Biochem. Zool. 81, 496–507 (2008)

    Article  Google Scholar 

  22. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)

    Article  Google Scholar 

  23. Zimmerman, H.J.: Fuzzy Set Theory and Its Applications, 2nd edn. Kluwer, Boston MA (1991)

    Book  Google Scholar 

  24. Takagi, T., Sugeno, M.: Fuzzy identifications of systems and its applications to modeling and control. IEE Trans Syst. MAN Cybern. 15(1), 116–132 (1985)

    Article  Google Scholar 

  25. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)

    Article  MathSciNet  Google Scholar 

  26. Bezdek, J.C., Pal, S.K.: Fuzzy Models for Pattern Recognition. IEEE Press, New York (1992)

    Google Scholar 

  27. Echavarría-Heras, H.A., Leal-Ramírez, C., Castro-Rodriguez, J.R., Villa-Diharce, E., Castillo, O.: A Takagi-Sugeno-Kang fuzzy model formalization of eelgrass leaf biomass allometry with application to the estimation of average biomass of leaves in shoots: comparing the reproducibility strength of the present fuzzy and related crisp proxies. In: Castillo, O., Melin, P., Kacprzyk, P. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, 2nd edn. Springer, Berlin (2018)

    Google Scholar 

  28. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy. Syst. 4(2), 103–111 (1996)

    Article  Google Scholar 

  29. Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. The MIT Press, Massachusetts (1998)

    Book  Google Scholar 

  30. Barros, L.C., Bassanezi, R.C.: Tópicos em lógica fuzzy e biomatemática, 2nd edn., p. 344. UNICAMP/IMECC, Campinas (2010)

    Google Scholar 

  31. Lin, L.I.K.: A concordance correlation coefficient to evaluate reproducibility. Biometrics 45, 255–268 (1989)

    Article  Google Scholar 

  32. Wang, L.X., Mendel, J.M.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans. Neural Networks. 3(5), 807–814 (1992)

    Article  Google Scholar 

  33. Bitar, S.D., Campos, C.P., Freitas, C.E.C.: Applying fuzzy logic to estimate the parameters of the length-weight relationship. Braz. J. Biol. 1–8 (2016)

    Google Scholar 

  34. Mascaro, J., Litton, C.M., Hughes, R.F., Uowolo, A., Schnitzer, S.A.: Is logarithmic transformation necessary in allometry? Ten, one-hundred, one-thousand-times yes. Biol. J. Linn. Soc. 111, 230–233 (2014)

    Article  Google Scholar 

  35. Echavarría-Heras, H.A., Solana-Arellano, M.E., Leal-Ramírez, C., Franco-Vizcaino, E.: An allometric method for measuring leaf growth in eelgrass, Zostera marina, using leaf length data. Bot. Mar. 56(3), 275–86 (2013)

    Google Scholar 

  36. Lai, J., Yang, B., Lin, D., Kerkhoff, A.J, Ma., K.: The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PLoS ONE (2013)

    Google Scholar 

  37. Xiao, X., White, E.P., Hooten, M.B., Durham, S.L.: On the use of log-transformation vs. non-linear regression for analyzing biological power laws. Ecology 92(10), 1887–1894 (2011)

    Article  Google Scholar 

  38. Jolicoeur, P.: A simplified model for bivariate complex allometry. J. Theor. Biol. 140, 41–49 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor Echavarría-Heras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leal-Ramírez, C., Echavarría-Heras, H., Villa-Diharce, E. (2020). Applying Fuzzy Logic to Identify Heterogeneity of the Allometric Response in Arithmetical Space. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Intuitionistic and Type-2 Fuzzy Logic Enhancements in Neural and Optimization Algorithms: Theory and Applications. Studies in Computational Intelligence, vol 862. Springer, Cham. https://doi.org/10.1007/978-3-030-35445-9_2

Download citation

Publish with us

Policies and ethics