Skip to main content

Impact of Exercise on Cardiovascular Risk Factors: Arterial Hypertension

  • 836 Accesses

Abstract

Hypertension is defined as a systolic blood pressure (BP) ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg or being on antihypertensive treatment. BP in excess of 140/90 mmHg is further categorized in terms of severity. Nearly one billion people in the world have hypertension, causing high BP to be the most important risk factor influencing the global burden of disease. The value of regular physical activity in decreasing blood pressure (BP) and improving several other cardiovascular risk factors has been demonstrated in a large number of studies. For this reason, irrespective of the level of BP, all professional organizations and committees recommend lowering of BP and prevention of hypertension in the first instance by lifestyle changes, including exercise. In this chapter, we will first describe the acute BP response during different types of exercise. Subsequently, we will discuss left ventricular performance and dimensions during a single bout of exercise. We will then provide an overview on the evidence on BP and left ventricular structure and function of exercise therapy in the prevention and management of high BP using data from observational studies and randomized controlled trials. Finally, we will outline some screening and safety measures when implementing exercise programmes in hypertensive individuals.

Keywords

  • Hypertension
  • Blood pressure
  • Dynamic exercise
  • Resistance exercise
  • Physical activity
  • Physical fitness

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-35374-2_36
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-35374-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 36.1
Fig. 36.2

References

  1. Zabetakis PM. Profiling the hypertensive patient in sports. Clin Sports Med. 1984;3(1):137–52.

    CAS  PubMed  Google Scholar 

  2. Palatini P. Blood pressure behaviour during physical activity. Sports Med. 1988;5(6):353–74.

    CAS  PubMed  Google Scholar 

  3. Palatini P. Exercise haemodynamics in the normotensive and the hypertensive subject. Clin Sci (Lond). 1994;87(3):275–87.

    CAS  Google Scholar 

  4. Mitchell JH, Reardon WC, McCloskey DI. Reflex effects on circulation and respiration from contracting skeletal muscle. Am J Phys. 1977;233(3):H374–8.

    CAS  Google Scholar 

  5. Rowell LB, Brengelmann GL, Blackmon JR, Bruce RA, Murray JA. Disparities between aortic and peripheral pulse pressures induced by upright exercise and vasomotor changes in man. Circulation. 1968;37(6):954–64.

    CAS  PubMed  Google Scholar 

  6. Radice M, Alli C, Avanzini F, Di Tullio M, Mariotti G, Taioli E, et al. Role of blood pressure response to provocative tests in the prediction of hypertension in adolescents. Eur Heart J. 1985;6(6):490–6.

    CAS  PubMed  Google Scholar 

  7. Palatini P, Pessina AC, Ardigò A, Veronese P, Dal Palù C. Response to some pressor tests in patients with labile and stable hypertension, before and after administration of atenolol. Boll Soc Ital Cardiol. 1977;22(8):1477–84.

    CAS  PubMed  Google Scholar 

  8. Rowell LB. Blood pressure regulation during exercise. Ann Med. 1991;23(3):329–33.

    CAS  PubMed  Google Scholar 

  9. Irving JB, Bruce RA, DeRouen TA. Variations in and significance of systolic pressure during maximal exercise (treadmill) testing. Am J Cardiol. 1977;39(6):841–8.

    CAS  PubMed  Google Scholar 

  10. Levy AM, Tabakin BS, Hanson JS. Hemodynamic responses to graded treadmill exercise in young untreated labile hypertensive patients. Circulation. 1967;35(6):1063–72.

    CAS  PubMed  Google Scholar 

  11. Palatini P, Mos L, Mormino P, Munari L, Del Torre M, Valle F, et al. Intra-arterial blood pressure monitoring in the evaluation of the hypertensive athlete. Eur Heart J. 1990;11(4):348–54.

    CAS  PubMed  Google Scholar 

  12. Bachmann KZR, Riess PJ, Zoloch KA. Blutddrucktelemetrie: kontinuerliche, directe blutdruckmessungen im altag und beim sport. Dts Med Wochenschr. 1970;14:741–7.

    Google Scholar 

  13. Palatini P, Mormino P, Mos L, Di Marco A, Munari L, Del Torre M, et al. Blood pressure changes during physical exercise (the beat phenomenon). J Hypertens Suppl. 1988;6(4):S88–90.

    CAS  PubMed  Google Scholar 

  14. Palatini P, Mos L, Mormino P, Di Marco A, Munari L, Fazio G, et al. Blood pressure changes during running in humans: the “beat” phenomenon. J Appl Physiol (1985). 1989;67(1):52–9.

    CAS  Google Scholar 

  15. Palatini P, Mos L, Munari L, Mormino P, Del Torre M, Valle F, et al. Beats modulate blood pressure during running. Am J Hypertens. 1989;2(11 Pt 1):872–4.

    CAS  PubMed  Google Scholar 

  16. Palatini P, Bongiovì S, Mario L, Schiraldi C, Mos L, Pessina AC. Above-normal left ventricular systolic performance during exercise in young subjects with mild hypertension. Eur Heart J. 1995;16(2):232–42.

    CAS  PubMed  Google Scholar 

  17. Fagard R, Aubert A, Staessen J, Eynde EV, Vanhees L, Amery A. Cardiac structure and function in cyclists and runners. Comparative echocardiographic study. Br Heart J. 1984;52(2):124–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chaney RH, Arndt S. Predictability of blood pressure response to isometric stress. Am J Cardiol. 1983;51(5):787–90.

    CAS  PubMed  Google Scholar 

  19. Jones RI, Lahiri A, Cashman PM, Dore C, Raftery EB. Left ventricular function during isometric hand grip and cold stress in normal subjects. Br Heart J. 1986;55(3):246–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sullivan J, Hanson P, Rahko PS, Folts JD. Continuous measurement of left ventricular performance during and after maximal isometric deadlift exercise. Circulation. 1992;85(4):1406–13.

    CAS  PubMed  Google Scholar 

  21. Bezucha GR, Lenser MC, Hanson PG, Nagle FJ. Comparison of hemodynamic responses to static and dynamic exercise. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(6):1589–93.

    CAS  PubMed  Google Scholar 

  22. Seals DR, Washburn RA, Hanson PG, Painter PL, Nagle FJ. Increased cardiovascular response to static contraction of larger muscle groups. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(2):434–7.

    CAS  PubMed  Google Scholar 

  23. Seals DR, Hanson PG, Washburn RA, Painter PL, Ward A, Nagle FJ. Cardiovascular response to static contraction in borderline hypertension. Clin Cardiol. 1985;8(6):348–52.

    CAS  PubMed  Google Scholar 

  24. McCloskey DI, Streatfeild KA. Muscular reflex stimuli to the cardiovascular system during isometric contractions of muscle groups of different mass. J Physiol. 1975;250(2):431–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Silke B, Watt SJ, Taylor SH. The circulatory response to lifting and carrying and its modification by beta-adrenoceptor blockade. Int J Cardiol. 1984;6(4):527–36.

    CAS  PubMed  Google Scholar 

  26. MacDougall JD, Tuxen D, Sale DG, Moroz JR, Sutton JR. Arterial blood pressure response to heavy resistance exercise. J Appl Physiol (1985). 1985;58(3):785–90.

    CAS  Google Scholar 

  27. Palatini P, Mos L, Munari L, Valle F, Del Torre M, Rossi A, et al. Blood pressure changes during heavy-resistance exercise. J Hypertens Suppl. 1989;7(6):S72–3.

    CAS  PubMed  Google Scholar 

  28. Hamilton WFWR, jr HHT. Arterial cerebrospinal and venous pressures in man during cough and strain. Am J Phys. 1944;141:42–50.

    Google Scholar 

  29. Fleck SJ, Dean LS. Resistance-training experience and the pressor response during resistance exercise. J Appl Physiol (1985). 1987;63(1):116–20.

    CAS  Google Scholar 

  30. Poliner LR, Dehmer GJ, Lewis SE, Parkey RW, Blomqvist CG, Willerson JT. Left ventricular performance in normal subjects: a comparison of the responses to exercise in the upright and supine positions. Circulation. 1980;62(3):528–34.

    CAS  PubMed  Google Scholar 

  31. Steingart RM, Wexler J, Slagle S, Scheuer J. Radionuclide ventriculographic responses to graded supine and upright exercise: critical role of the Frank-Starling mechanism at submaximal exercise. Am J Cardiol. 1984;53(11):1671–7.

    CAS  PubMed  Google Scholar 

  32. Fisman EZ, Frank AG, Ben-Ari E, Kessler G, Pines A, Drory Y, et al. Altered left ventricular volume and ejection fraction responses to supine dynamic exercise in athletes. J Am Coll Cardiol. 1990;15(3):582–8.

    CAS  PubMed  Google Scholar 

  33. ASTRAND I. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand Suppl. 1960;49(169):1–92.

    CAS  PubMed  Google Scholar 

  34. Adams KF, Vincent LM, McAllister SM, el-Ashmawy H, Sheps DS. The influence of age and gender on left ventricular response to supine exercise in asymptomatic normal subjects. Am Heart J. 1987;113(3):732–42.

    CAS  PubMed  Google Scholar 

  35. Julius S, Amery A, Whitlock LS, Conway J. Influence of age on the hemodynamic response to exercise. Circulation. 1967;36(2):222–30.

    CAS  PubMed  Google Scholar 

  36. Younis LT, Melin JA, Robert AR, Detry JM. Influence of age and sex on left ventricular volumes and ejection fraction during upright exercise in normal subjects. Eur Heart J. 1990;11(10):916–24.

    CAS  PubMed  Google Scholar 

  37. Mann DL, Denenberg BS, Gash AK, Makler PT, Bove AA. Effects of age on ventricular performance during graded supine exercise. Am Heart J. 1986;111(1):108–15.

    CAS  PubMed  Google Scholar 

  38. Bongiovì S, Palatini P, Macor F, Visentin P, Pessina AC. Age and blood-pressure-related changes in left ventricular diastolic filling. J Hypertens Suppl. 1992;10(2):S25–30.

    PubMed  Google Scholar 

  39. Ginzton LE, Conant R, Brizendine M, Laks MM. Effect of long-term high intensity aerobic training on left ventricular volume during maximal upright exercise. J Am Coll Cardiol. 1989;14(2):364–71.

    CAS  PubMed  Google Scholar 

  40. Tomai F, Ciavolella M, Gaspardone A, De Fazio A, Basso EG, Giannitti C, et al. Peak exercise left ventricular performance in normal subjects and in athletes assessed by first-pass radionuclide angiography. Am J Cardiol. 1992;70(4):531–5.

    CAS  PubMed  Google Scholar 

  41. Fagard R, Van den Broeke C, Amery A. Left ventricular dynamics during exercise in elite marathon runners. J Am Coll Cardiol. 1989;14(1):112–8.

    CAS  PubMed  Google Scholar 

  42. Vanoverschelde JL, Younis LT, Melin JA, Vanbutsele R, Leclercq B, Robert AR, et al. Prolonged exercise induces left ventricular dysfunction in healthy subjects. J Appl Physiol (1985). 1991;70(3):1356–63.

    CAS  Google Scholar 

  43. Seals DR, Rogers MA, Hagberg JM, Yamamoto C, Cryer PE, Ehsani AA. Left ventricular dysfunction after prolonged strenuous exercise in healthy subjects. Am J Cardiol. 1988;61(11):875–9.

    CAS  PubMed  Google Scholar 

  44. Upton MT, Rerych SK, Roeback JR, Newman GE, Douglas JM, Wallace AG, et al. Effect of brief and prolonged exercise on left ventricular function. Am J Cardiol. 1980;45(6):1154–60.

    CAS  PubMed  Google Scholar 

  45. Hartford M, Wikstrand JC, Wallentin I, Ljungman SM, Berglund GL. Left ventricular wall stress and systolic function in untreated primary hypertension. Hypertension. 1985;7(1):97–104.

    CAS  PubMed  Google Scholar 

  46. Aurigemma GP, Silver KH, Priest MA, Gaasch WH. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol. 1995;26(1):195–202.

    CAS  PubMed  Google Scholar 

  47. Palatini P, Visentin P, Nicolosi G, Mione V, Stritoni P, Michieletto M, et al. Endocardial versus midwall measurement of left ventricular function in mild hypertension: an insight from the Harvest Study. J Hypertens. 1996;14(8):1011–7.

    CAS  PubMed  Google Scholar 

  48. Palatini P, Visentin P, Mormino P, Pietra M, Piccolo D, Cozzutti E, et al. Left ventricular performance in the early stages of systemic hypertension. HARVEST Study Group Hypertension and Ambulatory Recording Venetia Study. Am J Cardiol. 1998;81(4):418–23.

    CAS  PubMed  Google Scholar 

  49. Shimizu G, Hirota Y, Kita Y, Kawamura K, Saito T, Gaasch WH. Left ventricular midwall mechanics in systemic arterial hypertension. Myocardial function is depressed in pressure-overload hypertrophy. Circulation. 1991;83(5):1676–84.

    CAS  PubMed  Google Scholar 

  50. de Simone G, Devereux RB, Roman MJ, Ganau A, Saba PS, Alderman MH, et al. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J Am Coll Cardiol. 1994;23(6):1444–51.

    PubMed  Google Scholar 

  51. Palatini P, Frigo G, Visentin P, Mario L, Mormino P, Pessina AC. Left ventricular contractile performance in the early stage of hypertension in humans. Eur J Appl Physiol. 2001;85(1-2):118–24.

    CAS  PubMed  Google Scholar 

  52. Huai P, Xun H, Reilly KH, Wang Y, Ma W, Xi B. Physical activity and risk of hypertension: a meta-analysis of prospective cohort studies. Hypertension. 2013;62(6):1021–6.

    CAS  PubMed  Google Scholar 

  53. Liu X, Zhang D, Liu Y, Sun X, Han C, Wang B, et al. Dose-response association between physical activity and incident hypertension: a systematic review and meta-analysis of cohort studies. Hypertension. 2017;69(5):813–20.

    CAS  PubMed  Google Scholar 

  54. Haslam DW, James WP. Obesity. Lancet. 2005;366(9492):1197–209.

    PubMed  Google Scholar 

  55. Blair SN, Goodyear NN, Gibbons LW, Cooper KH. Physical fitness and incidence of hypertension in healthy normotensive men and women. JAMA. 1984;252(4):487–90.

    CAS  PubMed  Google Scholar 

  56. Carnethon MR, Evans NS, Church TS, Lewis CE, Schreiner PJ, Jacobs DR, et al. Joint associations of physical activity and aerobic fitness on the development of incident hypertension: coronary artery risk development in young adults. Hypertension. 2010;56(1):49–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Williams PT. A cohort study of incident hypertension in relation to changes in vigorous physical activity in men and women. J Hypertens. 2008;26(6):1085–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sawada S, Tanaka H, Funakoshi M, Shindo M, Kono S, Ishiko T. Five year prospective study on blood pressure and maximal oxygen uptake. Clin Exp Pharmacol Physiol. 1993;20(7-8):483–7.

    CAS  PubMed  Google Scholar 

  59. Fagard RH, Cornelissen VA. Effect of exercise on blood pressure control in hypertensive patients. Eur J Cardiovasc Prev Rehabil. 2007;14(1):12–7.

    PubMed  Google Scholar 

  60. Cornelissen VA, Fagard RH. Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors. Hypertension. 2005;46(4):667–75.

    CAS  PubMed  Google Scholar 

  61. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2(1):e004473.

    PubMed  PubMed Central  Google Scholar 

  62. Costa EC, Hay JL, Kehler DS, Boreskie KF, Arora RC, Umpierre D, et al. Effects of high-intensity interval training versus moderate-intensity continuous training on blood pressure in adults with pre- to established hypertension: a systematic review and meta-analysis of randomized trials. Sports Med. 2018;48(9):2127–42.

    PubMed  Google Scholar 

  63. Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58(5):950–8.

    CAS  PubMed  Google Scholar 

  64. MacDonald HV, Johnson BT, Huedo-Medina TB, Livingston J, Forsyth KC, Kraemer WJ, et al. Dynamic resistance training as stand-alone antihypertensive lifestyle therapy: a meta-analysis. J Am Heart Assoc. 2016;5(10)

    Google Scholar 

  65. López-Valenciano A, Ruiz-Pérez I, Ayala F, Sánchez-Meca J, Vera-Garcia FJ. Updated systematic review and meta-analysis on the role of isometric resistance training for resting blood pressure management in adults. J Hypertens. 2019;

    Google Scholar 

  66. Inder JD, Carlson DJ, Dieberg G, McFarlane JR, Hess NC, Smart NA. Isometric exercise training for blood pressure management: a systematic review and meta-analysis to optimize benefit. Hypertens Res. 2016;39(2):88–94.

    PubMed  Google Scholar 

  67. Igarashi Y, Nogami Y. The effect of regular aquatic exercise on blood pressure: a meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2018;25(2):190–9.

    PubMed  Google Scholar 

  68. Xiong X, Wang P, Li S, Zhang Y, Li X. Effect of Baduanjin exercise for hypertension: a systematic review and meta-analysis of randomized controlled trials. Maturitas. 2015;80(4):370–8.

    PubMed  Google Scholar 

  69. Lauche R, Peng W, Ferguson C, Cramer H, Frawley J, Adams J, et al. Efficacy of Tai Chi and qigong for the prevention of stroke and stroke risk factors: a systematic review with meta-analysis. Medicine (Baltimore). 2017;96(45):e8517.

    Google Scholar 

  70. Cramer H, Haller H, Lauche R, Steckhan N, Michalsen A, Dobos G. A systematic review and meta-analysis of yoga for hypertension. Am J Hypertens. 2014;27(9):1146–51.

    CAS  PubMed  Google Scholar 

  71. Conceição LS, Neto MG, do Amaral MA, Martins-Filho PR, Oliveira Carvalho V. Effect of dance therapy on blood pressure and exercise capacity of individuals with hypertension: a systematic review and meta-analysis. Int J Cardiol. 2016;220:553–7.

    PubMed  Google Scholar 

  72. Pescatello LS, MacDonald HV, Ash GI, Lamberti LM, Farquhar WB, Arena R, et al. Assessing the existing professional exercise recommendations for hypertension: a review and recommendations for future research priorities. Mayo Clin Proc. 2015;90(6):801–12.

    PubMed  Google Scholar 

  73. Cornelissen VA, Buys R, Smart NA. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens. 2013;31(4):639–48.

    CAS  PubMed  Google Scholar 

  74. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.

    CAS  PubMed  Google Scholar 

  75. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503.

    PubMed  Google Scholar 

  76. Igarashi Y, Akazawa N, Maeda S. Regular aerobic exercise and blood pressure in East Asians: a meta-analysis of randomized controlled trials. Clin Exp Hypertens. 2018;40(4):378–89.

    PubMed  Google Scholar 

  77. Kelley GA, Kelley KS. Aerobic exercise and resting blood pressure in women: a meta-analytic review of controlled clinical trials. J Womens Health Gend Based Med. 1999;8(6):787–803.

    CAS  PubMed  Google Scholar 

  78. Tully MA, Cupples ME, Hart ND, McEneny J, McGlade KJ, Chan WS, et al. Randomised controlled trial of home-based walking programmes at and below current recommended levels of exercise in sedentary adults. J Epidemiol Community Health. 2007;61(9):778–83.

    PubMed  PubMed Central  Google Scholar 

  79. Jennings G, Nelson L, Nestel P, Esler M, Korner P, Burton D, et al. The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function, and glucose utilization in man: a controlled study of four levels of activity. Circulation. 1986;73(1):30–40.

    CAS  PubMed  Google Scholar 

  80. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87.

    PubMed  PubMed Central  Google Scholar 

  81. Cornelissen VA, Fagard RH. Exercise intensity and postexercise hypotension. J Hypertens. 2004;22(10):1859–61.

    CAS  PubMed  Google Scholar 

  82. Kenney MJ, Seals DR. Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension. 1993;22(5):653–64.

    CAS  PubMed  Google Scholar 

  83. Cornelissen VA, Arnout J, Holvoet P, Fagard RH. Influence of exercise at lower and higher intensity on blood pressure and cardiovascular risk factors at older age. J Hypertens. 2009;27(4):753–62.

    CAS  PubMed  Google Scholar 

  84. Eicher JD, Maresh CM, Tsongalis GJ, Thompson PD, Pescatello LS. The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am Heart J. 2010;160(3):513–20.

    PubMed  Google Scholar 

  85. Pescatello LS, Guidry MA, Blanchard BE, Kerr A, Taylor AL, Johnson AN, et al. Exercise intensity alters postexercise hypotension. J Hypertens. 2004;22(10):1881–8.

    CAS  PubMed  Google Scholar 

  86. Cononie CC, Graves JE, Pollock ML, Phillips MI, Sumners C, Hagberg JM. Effect of exercise training on blood pressure in 70- to 79-yr-old men and women. Med Sci Sports Exerc. 1991;23(4):505-11.

    PubMed  Google Scholar 

  87. Collier SR, Kanaley JA, Carhart R, Frechette V, Tobin MM, Hall AK, et al. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J Hum Hypertens. 2008;22(10):678–86.

    CAS  PubMed  Google Scholar 

  88. Casonatto J, Goessler KF, Cornelissen VA, Cardoso JR, Polito MD. The blood pressure-lowering effect of a single bout of resistance exercise: a systematic review and meta-analysis of randomised controlled trials. Eur J Prev Cardiol. 2016;23(16):1700–14.

    PubMed  Google Scholar 

  89. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, et al. Beyond medications and diet: alternative approaches to lowering blood pressure: a scientific statement from the american heart association. Hypertension. 2013;61(6):1360–83.

    CAS  PubMed  Google Scholar 

  90. Carlson DJ, Inder J, Palanisamy SK, McFarlane JR, Dieberg G, Smart NA. The efficacy of isometric resistance training utilizing handgrip exercise for blood pressure management: a randomized trial. Medicine (Baltimore). 2016;95(52):e5791.

    Google Scholar 

  91. Colado JC, Triplett NT, Tella V, Saucedo P, Abellán J. Effects of aquatic resistance training on health and fitness in postmenopausal women. Eur J Appl Physiol. 2009;106(1):113–22.

    PubMed  Google Scholar 

  92. Arca EA, Martinelli B, Martin LC, Waisberg CB, Franco RJ. Aquatic exercise is as effective as dry land training to blood pressure reduction in postmenopausal hypertensive women. Physiother Res Int. 2014;19(2):93–8.

    PubMed  Google Scholar 

  93. Casale PN, Devereux RB, Milner M, Zullo G, Harshfield GA, Pickering TG, et al. Value of echocardiographic measurement of left ventricular mass in predicting cardiovascular morbid events in hypertensive men. Ann Intern Med. 1986;105(2):173–8.

    CAS  PubMed  Google Scholar 

  94. Baglivo HP, Fabregues G, Burrieza H, Esper RC, Talarico M, Esper RJ. Effect of moderate physical training on left ventricular mass in mild hypertensive persons. Hypertension. 1990;15(2 Suppl):I153–6.

    CAS  PubMed  Google Scholar 

  95. Kokkinos PF, Narayan P, Colleran JA, Pittaras A, Notargiacomo A, Reda D, et al. Effects of regular exercise on blood pressure and left ventricular hypertrophy in African-American men with severe hypertension. N Engl J Med. 1995;333(22):1462–7.

    CAS  PubMed  Google Scholar 

  96. Zanettini R, Bettega D, Agostoni O, Ballestra B, del Rosso G, di Michele R, et al. Exercise training in mild hypertension: effects on blood pressure, left ventricular mass and coagulation factor VII and fibrinogen. Cardiology. 1997;88(5):468–73.

    CAS  PubMed  Google Scholar 

  97. Palatini P, Visentin P, Dorigatti F, Guarnieri C, Santonastaso M, Cozzio S, et al. Regular physical activity prevents development of left ventricular hypertrophy in hypertension. Eur Heart J. 2009;30(2):225–32.

    PubMed  Google Scholar 

  98. Boman K, Gerdts E, Wachtell K, Dahlöf B, Nieminen MS, Olofsson M, et al. Exercise and cardiovascular outcomes in hypertensive patients in relation to structure and function of left ventricular hypertrophy: the LIFE study. Eur J Cardiovasc Prev Rehabil. 2009;16(2):242–8.

    PubMed  Google Scholar 

  99. Hinderliter A, Sherwood A, Gullette EC, Babyak M, Waugh R, Georgiades A, et al. Reduction of left ventricular hypertrophy after exercise and weight loss in overweight patients with mild hypertension. Arch Intern Med. 2002;162(12):1333–9.

    PubMed  Google Scholar 

  100. Reid CM, Dart AM, Dewar EM, Jennings GL. Interactions between the effects of exercise and weight loss on risk factors, cardiovascular haemodynamics and left ventricular structure in overweight subjects. J Hypertens. 1994;12(3):291–301.

    CAS  PubMed  Google Scholar 

  101. Palatini P. Cardiovascular effects of exercise in young hypertensives. Int J Sports Med. 2012;33(9):683–90.

    CAS  PubMed  Google Scholar 

  102. Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.

    PubMed  Google Scholar 

  103. Pescatello LS, Bairos L, Vanheest JL, Maresh CM, Rodriguez NR, Moyna NM, et al. Postexercise hypotension differs between white and black women. Am Heart J. 2003;145(2):364–70.

    PubMed  Google Scholar 

  104. Palatini P, Bratti P, Palomba D, Saladini F, Zanatta N, Maraglino G. Regular physical activity attenuates the blood pressure response to public speaking and delays the development of hypertension. J Hypertens. 2010;28(6):1186–93.

    CAS  PubMed  Google Scholar 

  105. Laterza MC, de Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, et al. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49(6):1298–306.

    CAS  PubMed  Google Scholar 

  106. Fagard RH. Athletes with systemic hypertension. Cardiol Clin. 2007;25(3):441–8vii.

    PubMed  Google Scholar 

  107. Laukkanen JA, Khan H, Kurl S, Willeit P, Karppi J, Ronkainen K, et al. Left ventricular mass and the risk of sudden cardiac death: a population-based study. J Am Heart Assoc. 2014;3(6):e001285.

    PubMed  PubMed Central  Google Scholar 

  108. Black HR, Sica D, Ferdinand K, White WB. American Heart Association Electrocardiography and Arrhythmias Committee of Council on Clinical Cardiology CoCDiY, Council on Cardiovascular and Stroke Nursing, Council on Functional Genomics and Translational Biology, and American College of Cardiology. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 6: hypertension: a scientific statement from the American Heart Association and the American College of Cardiology. Circulation. 2015;132(22):e298–302.

    PubMed  Google Scholar 

  109. Niebauer J, Börjesson M, Carre F, Caselli S, Palatini P, Quattrini F, et al. Recommendations for participation in competitive sports of athletes with arterial hypertension: a position statement from the sports cardiology section of the European Association of Preventive Cardiology (EAPC). Eur Heart J. 2018;39(40):3664–71.

    PubMed  Google Scholar 

  110. Palatini P. Exaggerated blood pressure response to exercise: pathophysiologic mechanisms and clinical relevance. J Sports Med Phys Fitness. 1998;38(1):1–9.

    CAS  PubMed  Google Scholar 

  111. Hansen D, Niebauer J, Cornelissen V, Barna O, Neunhäuserer D, Stettler C, et al. Exercise prescription in patients with different combinations of cardiovascular disease risk factors: a consensus statement from the EXPERT working group. Sports Med. 2018;48(8):1781–97.

    PubMed  Google Scholar 

  112. Borjesson M, Urhausen A, Kouidi E, Dugmore D, Sharma S, Halle M, et al. Cardiovascular evaluation of middle-aged/senior individuals engaged in leisure-time sport activities: position stand from the sections of exercise physiology and sports cardiology of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2011;18(3):446–58.

    PubMed  Google Scholar 

  113. Sharman JE, La Gerche A, Coombes JS. Exercise and cardiovascular risk in patients with hypertension. Am J Hypertens. 2015;28(2):147–58.

    PubMed  Google Scholar 

  114. AOaCftACRGTAaL-LTtPHA T. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA. 2002;288(23):2998–3007.

    Google Scholar 

  115. Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ. 2013;347:f5577.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Palatini .

Editor information

Editors and Affiliations

Review

Review

36.1.1 Questions

  1. 1.

    A female patient aged 56 years presents at your consultation with an office blood pressure of 139/92 mmHg but otherwise healthy with no other co-morbidities or risk factors. Based on the current available evidence, what type, intensity and frequency of exercise would you preferentially prescribe for her?

  2. 2.

    A 48-year-old competitive football player presents at your consultation for a preparticipation cardiovascular screening. His office BP is 148/90 mmHg and in line with a recent measurement by his GP. Otherwise he has a normal resting ECG, no family history of CV disease and no other risk factors. Can he compete?

36.1.2 Answers

  1. 1.

    This patient should be recommended to perform aerobic endurance exercise, at least 5 days per week at a moderate intensity for a total of 150 min per week. Dynamic resistance training at moderate intensity could be added as an adjunct, two times per week.

  2. 2.

    According to current guidelines, this player cannot compete as he has a grade I hypertension. Therefore, lifestyle changes and/or medical therapy are advised. From the moment his BP is controlled (<1 40/85 mmHg) and in the absence of any target organ damage or associated clinical conditions, he can return to competition.

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Palatini, P., Cornelissen, V. (2020). Impact of Exercise on Cardiovascular Risk Factors: Arterial Hypertension. In: Pressler, A., Niebauer, J. (eds) Textbook of Sports and Exercise Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-35374-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35374-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35373-5

  • Online ISBN: 978-3-030-35374-2

  • eBook Packages: MedicineMedicine (R0)