Abstract
Obesity is a major global concern due to its alarming prevalence and associated risks for multiple diseases. The rate of obesity has nearly tripled in the last four decades and amounting evidence is implying a critical role of developmental factors before, during and after pregnancy in promoting this global pandemic. Maternal obesity in particular has been associated with large-for-gestational age babies and increased risk of obesity in adulthood, thus generating a vicious cycle. Studies in animal models demonstrated that such effects of maternal obesity can be detected in the offspring across up to three generations, suggesting a profound transgenerational impact. This chapter will discuss critical windows for developmental programming of obesity and possible mechanisms involved such as oxidative stress, mitochondrial dysfunction, placental insults, intrauterine overnutrition, appetite dysregulation and microbiome. A special focus will be put on epigenetic regulation and the role of sirtuins, which have been suggested to play a central role in the metabolic programming process. Finally, the prospective of intervention therapies for maternal obesity-induced developmental programming will be briefly discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1(8489):1077–1081
Barker DJ et al (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2(8663):577–580
Lucas A (1991) Programming by early nutrition in man. Child Environ Adult Dis 1991:38–55
Black RE et al (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382(9890):9427–9451
Padmanabhan V, Cardoso RC, Puttabyatappa M (2016) Developmental programming, a pathway to disease. Endocrinology 157(4):1328–1340
Fullston T et al (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27(10):4226–4243
Linabery AM et al (2013) Stronger influence of maternal than paternal obesity on infant and early childhood body mass index: the F els L ongitudinal S tudy. Pediatric obesity 8(3):159–169
Shankar K et al (2011) Maternal obesity promotes a proinflammatory signature in rat uterus and blastocyst. Endocrinology 152(11):4158–4170
Jungheim ES et al (2010) Diet-induced obesity model: abnormal oocytes and persistent growth abnormalities in the offspring. Endocrinology 151(8):4039–4046
Shah DK et al (2010) Oocyte and embryo quality in obese patients undergoing in vitro fertilization (IVF). Fertil Steril 94(4):S51
Zhang L et al (2015) Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle 14(18):2959–2968
Wang H et al (2018) Loss of TIGAR induces oxidative stress and meiotic defects in oocytes from obese mice. Mol Cell Proteomics 17(7):1354–1364
Han L et al (2018) Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes. Nat Genet 50(3):432–442
Igosheva N et al (2010) Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS ONE 5(4):e10074
Dokras A et al (2006) Obstetric outcomes after in vitro fertilization in obese and morbidly obese women. Obstet Gynecol 108(1):61–69
Leary C, Leese HJ, Sturmey RG (2014) Human embryos from overweight and obese women display phenotypic and metabolic abnormalities. Hum Reprod 30(1):122–132
Taylor PD et al (2005) Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol-Regul Integr Comp Physiol 288(1):R134–R139
Zhang L et al (2015) Sirt3 prevents maternal obesity-associated oxidative stress and meiotic defects in mouse oocytes. Cell Cycle 14:2959–2968
Wu LL et al (2015) Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development 142(4):681–691
Saben JL et al (2016) Maternal metabolic syndrome programs mitochondrial dysfunction via germline changes across three generations. Cell Reports 16(1):1–8
Liang C, DeCourcy K, Prater MR (2010) High–saturated-fat diet induces gestational diabetes and placental vasculopathy in C57BL/6 mice. Metabolism 59(7):943–950
Li H-P, Chen X, Li M-Q (2013) Gestational diabetes induces chronic hypoxia stress and excessive inflammatory response in murine placenta. Int J Clin Exp Pathol 6(4):650
Zhu MJ et al (2010) Maternal obesity markedly increases placental fatty acid transporter expression and fetal blood triglycerides at midgestation in the ewe. Am J Physiol-Regul Integr Comp Physiol 299(5):R1224–R1231
Saben J et al (2014) Maternal obesity is associated with a lipotoxic placental environment. Placenta 35(3):171–177
Jones HN et al (2009) High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J 23(1):271–278
Magnusson-Olsson A et al (2006) Gestational and hormonal regulation of human placental lipoprotein lipase. J Lipid Res 47(11):2551–2561
Qiao L et al (2015) Maternal high fat feeding increases placenta lipoprotein lipase activity by reducing Sirt1 expression in mice. Diabetes 64(9):3111–3120
Heerwagen MJ et al (2010) Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol-Regul Integr Comp Physiol 299(3):R711–R722
Vega CC et al (2015) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 39(4):712–719
Catalano P (2015) Maternal obesity and metabolic risk to the offspring: why lifestyle interventions may have not achieved the desired outcomes. Int J Obes 39(4):642
Shankar K et al (2008) Maternal obesity at conception programs obesity in the offspring. Am J Physiol-Regul Integr Comp Physiol 294(2):R528–R538
Oben JA et al (2010) Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol 52(6):913–920
Sun B et al (2012) Maternal high-fat diet during gestation or suckling differentially affects offspring leptin sensitivity and obesity. Diabetes 61(11):2833–2841
Desai M et al (2014) Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol 211(3):237. e1–237. e13
Rasmussen KM (2007) Association of maternal obesity before conception with poor lactation performance. Annu Rev Nutr 27:103–121
Leonard SA et al (2011) Associations between high prepregnancy body mass index, breast-milk expression, and breast-milk production and feeding–. Am J Clin Nutr 93(3):556–563
Saben JL et al (2014) Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS ONE 9(5):e98066
Chen H, Morris MJ (2009) Differential responses of orexigenic neuropeptides to fasting in offspring of obese mothers. Obesity 17(7):1356–1362
Nguyen LT et al (2019) SIRT1 overexpression attenuates offspring metabolic and liver disorders as a result of maternal high-fat feeding. J Physiol 597(2):467–480
Purcell RH et al (2011) Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior. Physiol Behav 104(3):474–479
Bautista CJ et al (2016) Changes in milk composition in obese rats consuming a high-fat diet. Br J Nutr 115(3):538–546
Fields DA, Demerath EW (2012) Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition. Pediatric Obesity 7(4):304–312
Isganaitis E et al (2019) Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clin Nutr
Brion MJ et al (2010) Maternal macronutrient and energy intakes in pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects. Am J Clin Nutr 91(3):748–756
Morris MJ, Chen H (2009) Established maternal obesity in the rat reprograms hypothalamic appetite regulators and leptin signaling at birth. Int J Obes 33(1):115
Chang G-Q et al (2008) Maternal high-fat diet and fetal programming: increased proliferation of hypothalamic peptide-producing neurons that increase risk for overeating and obesity. J Neurosci 28(46):12107–12119
Férézou-Viala J et al (2007) Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J Physiol-Regul Integr Comp Physiol 293(3):R1056–R1062
Page KC et al (2009) Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol-Regul Integr Comp Physiol 297(4):R1049–R1057
Chen H et al (2008) Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. Endocrinology 149(11):5348–5356
Schuster S et al (2011) Leptin in maternal serum and breast milk: association with infants’ body weight gain in a longitudinal Study over 6 months of lactation. Pediatr Res 70:633
Suter MA et al (2012) A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J 26(12):5106–5114
Borengasser SJ et al (2014) High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring. PLoS ONE 9(1):e84209
Suter MA et al (2014) In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model. Am J Obstet Gynecol 210(5):463. e1–463. e11
Osorio JS et al (2013) Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves1. J Dairy Sci 96(6):3573–3587
Friedman JE (2018) Developmental programming of obesity and diabetes in mouse, monkey, and man in 2018: where are we headed? Diabetes 67(11):2137–2151
Yu H-L et al (2015) Global DNA methylation was changed by a maternal high-lipid, high-energy diet during gestation and lactation in male adult mice liver. Br J Nutr 113(7):1032–1039
Seki Y et al (2017) In utero exposure to a high-fat diet programs hepatic hypermethylation and gene dysregulation and development of metabolic syndrome in male mice. Endocrinology 158(9):2860–2872
Michels KB, Harris HR, Barault L (2011) Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS ONE 6(9):e25254
Benatti R et al (2014) Maternal high-fat diet consumption modulates hepatic lipid metabolism and microRNA-122 (miR-122) and microRNA-370 (miR-370) expression in offspring. Br J Nutr 111(12):2112–2122
Yan X et al (2013) Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int J Obes 37(4):568
Fernandez-Twinn DS et al (2014) Downregulation of IRS-1 in adipose tissue of offspring of obese mice is programmed cell-autonomously through post-transcriptional mechanisms. Mol Metab 3(3):325–333
Laker RC et al (2014) Exercise prevents maternal high-fat diet–induced hypermethylation of the Pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63(5):1605–1611
Lesseur C et al (2013) Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 381(1–2):160–167
Sharp GC et al (2015) Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon Longitudinal Study of Parents and Children. Int J Epidemiol 44(4):1288–1304
Miller C et al (2011) The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion. Biochimica et Biophysica Acta (BBA)-Mol Basis Dis 1812(5):625–629
Obermann-Borst SA et al (2013) Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res 74(3):344
Skinner MK (2008) What is an epigenetic transgenerational phenotype?: F3 or F2. Reprod Toxicol 25(1):2–6
Tsoulis MW et al (2016) Maternal high-fat diet-induced loss of fetal oocytes is associated with compromised follicle growth in adult rat offspring. Biol Reprod 94(4):94, 1–11
Cheong Y et al (2014) Diet-induced maternal obesity alters ovarian morphology and gene expression in the adult mouse offspring. Fertil Steril 102(3):899–907
Masuyama H et al (2015) The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156(7):2482–2491
Chang H-C, Guarente L (2014) SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab 25(3):138–145
Gao Z et al (2011) Sirtuin 1 (SIRT1) protein degradation in response to persistent c-Jun N-terminal kinase 1 (JNK1) activation contributes to hepatic steatosis in obesity. J Biol Chem 286(25):22227–22234
dos Santos Costa C et al (2010) SIRT1 transcription is decreased in visceral adipose tissue of morbidly obese patients with severe hepatic steatosis. Obes Surg 20(5):633–639
Çakir I et al (2009) Hypothalamic Sirt1 regulates food intake in a rodent model system. PLoS ONE 4(12):e8322
Hasegawa K et al (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19(11):1496–1504
Lappas M et al (2011) SIRT1 is a novel regulator of key pathways of human labor. Biol Reprod 84(1):167–178
Kawamura Y et al (2010) Sirt3 protects in vitro–fertilized mouse preimplantation embryos against oxidative stress–induced p53-mediated developmental arrest. J Clin Investig 120(8):2817
Borengasser SJ et al (2011) Maternal obesity during gestation impairs fatty acid oxidation and mitochondrial SIRT3 expression in rat offspring at weaning. PLoS ONE 6(8):e24068
Di Emidio G et al (2014) SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Hum Reprod 29(9):2006–2017
Nguyen LT et al (2018) SRT1720 attenuates obesity and insulin resistance but not liver damage in the offspring due to maternal and postnatal high-fat diet consumption. Am J Physiol-Endocrinol Metab 315(2):E196–E203
Uddin GM et al (2017) Nicotinamide mononucleotide (NMN) supplementation ameliorates the impact of maternal obesity in mice: comparison with exercise. Sci Rep 7(1):15063
Nguyen LT et al (2017) SIRT1 reduction is associated with sex-specific dysregulation of renal lipid metabolism and stress responses in offspring by maternal high-fat diet. Sci Rep 7(1):8982
Nguyen LT et al (2019) SIRT1 attenuates kidney disorders in male offspring due to maternal high-fat diet. Nutrients 11(1):146
Jain AP et al (2013) The impact of interpregnancy weight change on birthweight in obese women. Am J Obstet Gynecol 208(3):205. e1–205. e7
Oteng-Ntim E et al (2018) Interpregnancy weight change and adverse pregnancy outcomes: a systematic review and meta-analysis. BMJ Open 8(6):e018778
Zambrano E et al (2010) RAPID REPORT: dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats. J Physiol 588(10):1791–1799
Willmer M et al (2013) Surgically induced interpregnancy weight loss and prevalence of overweight and obesity in offspring. PLoS ONE 8(12):e82247
Berglind D et al (2014) Differences in gestational weight gain between pregnancies before and after maternal bariatric surgery correlate with differences in birth weight but not with scores on the body mass index in early childhood. Pediatr Obes 9(6):427–434
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nguyen, L.T., Pollock, C.A., Saad, S. (2020). The Developmental Mechanisms of Obesity by Maternal Obesity. In: Tappia, P., Ramjiawan, B., Dhalla, N. (eds) Pathophysiology of Obesity-Induced Health Complications. Advances in Biochemistry in Health and Disease, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-030-35358-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-35358-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35357-5
Online ISBN: 978-3-030-35358-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)