Skip to main content

Biopolymers and Biocomposites

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes

Abstract

This chapter gives a comprehensive review on R&D efforts to develop bio-based thermosetting resins and biocomposites for use in critical applications such as aircraft fabrication, rail transportation, and construction by a Chinese research consortium in collaboration with international teams. This work was initially motivated by the fact that, on one hand, environmental and resource-related benefits of bio-sourced materials are still compromised by limited standards of technical performance and material life. On the other hand, in the air and ground transportation sectors, new environmental regulations and societal concerns have triggered a search for new products and processes that complement not only environment but also resources. To address this issue, novel bio-sourced materials, including bio-sourced epoxies, continuous plant fibers, textiles and prepregs, and neat and hybrid biocomposite laminates, were developed. These materials were characterized, modified, and evaluated in terms of their interfacial properties, flammability, and hydrothermal stability levels. Quasi-structural and structural damping biocomposite structures were finally designed and manufactured using technologies that have been fully adapted to state-of-the-art industrial composite processes. It is also found that developing function-integrated plant-fiber-fabric-reinforced biocomposites and corresponding hybrid structures appears to be more essential and feasible than the mere development of “high-performance” biocomposites for applications. At the end of the chapter, structural damping and decorative quasi-structural composites for use in aircraft, rail transportation, and civil engineering sectors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamri H, Low I (2012) Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites. Polym Test 31(6):810–818

    Article  CAS  Google Scholar 

  • Alongi J, Ciobanu M, Malucelli G (2011) Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol–gel processes. Carbohydr Polym 85(3):599–608

    Article  CAS  Google Scholar 

  • Alongi J, Carosio F, Malucelli G (2012a) Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: flammability and combustion behaviour. Cellulose 19(3):1041–1050

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Malucelli G, Rosace G (2012b) Hybrid phosphorus-doped silica architectures derived from a multistep sol–gel process for improving thermal stability and flame retardancy of cotton fabrics. Polym Degrad Stab 97(8):1334–1344

    Article  CAS  Google Scholar 

  • Alongi J, Colleoni C, Rosace G, Malucelli G (2013) The role of pre-hydrolysis on multi step sol–gel processes for enhancing the flame retardancy of cotton. Cellulose 20(1):525–535

    Article  CAS  Google Scholar 

  • Bachmann J, Yi X, Gong H, Martinez X, Bugeda G, Oller S, Tserpes K, Ramon E, Paris C, Moreira P, Fang Z, Li Y, Liu Y, Liu X, Xian G, Tong J, Wei J, Zhang X, Zhu J, Ma S, Yu T (2018) Outlook on ecologically improved composites for aviation interior and secondary structures. CEAS Aeronaut J 9(3):533–543

    Article  Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470

    Article  CAS  Google Scholar 

  • Brancatelli G, Colleoni C, Massafra M, Rosace G (2011) Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polym Degrad Stab 96(4):483–490

    Article  CAS  Google Scholar 

  • Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67(7–8):1674–1683

    Article  CAS  Google Scholar 

  • Drzal L, Amar Mohanty A, Manjusri Misra M (2001) Bio-composite materials as alternatives to petroleum-based composites for automotive applications. https://www.researchgate.net/publication/228474911_Bio-composite_Materials_as_Alternatives_to_Petroleum-based_Composites_for_Automotive_Applications. Accessed 21 Feb 2019

  • Eco-compass.eu (2016) Eco Compass Project. http://www.eco-compass.eu. Accessed 21 Feb 2019

  • Edwards B, El-Shafei A, Hauser P, Malshe P (2012) Towards flame retardant cotton fabrics by atmospheric pressure plasma-induced graft polymerization: synthesis and application of novel phosphoramidate monomers. Surf Coat Technol 209:73–79

    Article  CAS  Google Scholar 

  • Guin T, Krecker M, Milhorn A, Grunlan J (2014) Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose 21(4):3023–3030

    Article  CAS  Google Scholar 

  • Huang J, Chang Hung Y, Wen Y, Kang C, Yeh M (2009) Polylactide/nano- and micro-scale silica composite films. II. Melting behavior and cold crystallization. J Appl Polym Sci 112(5):3149–3156

    Article  CAS  Google Scholar 

  • Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    Article  CAS  Google Scholar 

  • Jana S, Zhong W (2009) Graphite particles with a “puffed” structure and enhancement in mechanical performance of their epoxy composites. Mater Sci Eng A 525(1–2):138–146

    Article  CAS  Google Scholar 

  • Jangra S, Stalin K, Dilbaghi N, Kumar S, Tawale J, Singh S, Pasricha R (2012) Antimicrobial activity of zirconia (ZrO2) nanoparticles and zirconium complexes. J Nanosci Nanotechnol 12(9):7105–7112

    Article  CAS  Google Scholar 

  • Jimenez M, Bellayer S, Duquesne S, Bourbigot S (2010) Improvement of heat resistance of high performance fibers using a cold plasma polymerization process. Surf Coat Technol 205(3):745–758

    Article  CAS  Google Scholar 

  • Kalia S, Kaith B, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49(7):1253–1272

    Article  CAS  Google Scholar 

  • Khalili P, Tshai K, Kong I (2017a) Natural fiber reinforced expandable graphite filled composites: evaluation of the flame retardancy, thermal and mechanical performances. Compos A: Appl Sci Manuf 100:194–205

    Article  CAS  Google Scholar 

  • Khalili P, Tshai K, Hui D, Kong I (2017b) Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Compos Part B 114:101–110

    Article  CAS  Google Scholar 

  • Khan B, Warner P, Wang H (2014) Antibacterial properties of hemp and other natural fibre plants: a review. Bioresources 9(2):3642–3659

    Article  Google Scholar 

  • Lam Y, Kan C, Yuen C (2010) Effect of zinc oxide on flame retardant finishing of plasma pre-treated cotton fabric. Cellulose 18(1):151–165

    Article  CAS  Google Scholar 

  • Laufer G, Kirkland C, Morgan A, Grunlan J (2012) Intumescent multilayer nanocoating, made with renewable polyelectrolytes, for flame-retardant cotton. Biomacromolecules 13(9):2843–2848

    Article  CAS  Google Scholar 

  • Li Y, Mai Y, Ye L (2005) Effects of fibre surface treatment on fracture-mechanical properties of sisal-fibre composites. Compos Interf 12(1–2):141–163

    Article  Google Scholar 

  • Li Y, Hu Y, Hu C, Yu Y (2008) Microstructures and mechanical properties of natural fibers. Adv Mater Res 33–37:553–558

    Article  Google Scholar 

  • Li L, Yu Y, Wu Q, Zhan G, Li S (2009) Effect of chemical structure on the water absorption of amine-cured epoxy resins. Corros Sci 51(12):3000–3006

    Article  CAS  Google Scholar 

  • Li Y, Yi X, Yu T, Xian G (2018) An overview of structural-functional-integrated composites based on the hierarchical microstructures of plant fibers. Adv Compos Hybrid Mater 1(2):231–246

    Article  Google Scholar 

  • Liu Z, Yang Y, Zhang L, Liu Z, Xiong H (2007) Study on the cationic modification and dyeing of ramie fiber. Cellulose 14(4):337–345

    Article  CAS  Google Scholar 

  • Liu X, Xin W, Zhang J (2009) Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem 11(7):1018–1025

    Article  CAS  Google Scholar 

  • Liu W, Chen L, Wang Y (2012a) A novel phosphorus-containing flame retardant for the formaldehyde-free treatment of cotton fabrics. Polym Degrad Stab 97(12):2487–2491

    Article  CAS  Google Scholar 

  • Liu X, Huang W, Jiang Y, Zhu J, Zhang C (2012b) Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polym Lett 6(4):293–298

    Article  CAS  Google Scholar 

  • Liu X, Yi X, Zhu J (2018) Bio-based epoxies and composites as environmentally friendly alternative materials. Thermosets, pp 621–637

    Google Scholar 

  • Loos A, Springer G (1979) Moisture absorption of graphite-epoxy composites immersed in liquids and in humid air. J Compos Mater 13(2):131–147

    Article  CAS  Google Scholar 

  • Ma S, Liu X, Fan L, Jiang Y, Cao L, Tang Z, Zhu J (2013a) Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity. ChemSusChem 7(2):555–562

    Article  CAS  Google Scholar 

  • Ma S, Liu X, Jiang Y, Fan L, Feng J, Zhu J (2013b) Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Sci China Chem 57(3):379–388

    Article  CAS  Google Scholar 

  • Ma S, Liu X, Jiang Y, Tang Z, Zhang C, Zhu J (2013c) Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem 15(1):245–254

    Article  CAS  Google Scholar 

  • Matsui K, Ohgai M (2005) Formation mechanism of hydrous-zirconia particles produced by hydrolysis of ZrOCl2 solutions. J Am Ceram Soc 80(8):1949–1956

    Article  Google Scholar 

  • Natureworksllc.com (2019) NatureWorks | Home. https://www.natureworksllc.com/. Accessed 21 Feb 2019

  • Ni N, Wen Y, He D, Yi X, Zhang T, Xu Y (2015) High damping and high stiffness CFRP composites with aramid non-woven fabric interlayers. Compos Sci Technol 117:92–99

    Article  CAS  Google Scholar 

  • Opwis K, Wego A, Bahners T, Schollmeyer E (2011) Permanent flame retardant finishing of textile materials by a photochemical immobilization of vinyl phosphonic acid. Polym Degrad Stab 96(3):393–395

    Article  CAS  Google Scholar 

  • Pan H, Song L, Ma L, Pan Y, Liew K, Hu Y (2014) Layer-by-layer assembled thin films based on fully biobased polysaccharides: chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose 21(4):2995–3006

    Article  CAS  Google Scholar 

  • Powers W (2000) FEATURES—automotive materials in the 21st century—forecast-type article is based on a presentation made by the author at ASM international’s materials XXI conference. Dr. Powers is Ford Motor Co.’s vice president of research. Adv Mater Manuf Process 157(5):38–41

    Google Scholar 

  • Price D, Horrocks A, Akalin M, Faroq A (1997) Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. J Anal Appl Pyrolysis 40–41:511–524

    Article  Google Scholar 

  • Sain M, Park S, Suhara F, Law S (2004) Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym Degrad Stab 83(2):363–367

    Article  CAS  Google Scholar 

  • Sakka S (2003) J Sol-Gel Sci Technol 26(1/3):29–33

    Article  CAS  Google Scholar 

  • Shen C, Springer G (1976) Moisture absorption and desorption of composite materials. J Compos Mater 10(1):2–20

    Article  Google Scholar 

  • Shen X, Jia J, Chen C, Li Y, Kim J (2014) Enhancement of mechanical properties of natural fiber composites via carbon nanotube addition. J Mater Sci 49(8):3225–3233

    Article  CAS  Google Scholar 

  • Summerscales J, Dissanayake N, Virk A, Hall W (2010) A review of bast fibres and their composites. Part 1—fibres as reinforcements. Compos A: Appl Sci Manuf 41(10):1329–1335

    Article  CAS  Google Scholar 

  • Tang Z, Zhang C, Liu X, Zhu J (2011) The crystallization behavior and mechanical properties of polylactic acid in the presence of a crystal nucleating agent. J Appl Polym Sci 125(2):1108–1115

    Article  CAS  Google Scholar 

  • Tian X, Lv C, Zhang G (2011) Preparation and antibacterial activity of Al2O3-ZrO2 carrying Ag+. Appl Mech Mater 55–57:1464–1467

    Article  CAS  Google Scholar 

  • Tsuji H, Miyauchi S (2001) Poly(l-lactide): 7. Enzymatic hydrolysis of free and restricted amorphous regions in poly(l-lactide) films with different crystallinities and a fixed crystalline thickness. Polymer 42(9):4463–4467

    Article  CAS  Google Scholar 

  • Wang H, Xian G, Li H, Sui L (2014) Durability study of a ramie-fiber reinforced phenolic composite subjected to water immersion. Fibers Polym 15(5):1029–1034

    Article  CAS  Google Scholar 

  • Wang H, Xian G, Li H (2015) Grafting of nano-TiO2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Compos A: Appl Sci Manuf 76:172–180

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Top value added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas

    Google Scholar 

  • Xia Y, Xian G, Li H (2014) Enhancement of tensile properties of flax filaments through mercerization under sustained tension. Polym Polym Compos 22(2):203–208

    CAS  Google Scholar 

  • Xian G, Yin P, Kafodya I, et al (2014) Durability study of ramie fiber fabric reinforced phenolic plates under humidity conditions. Sci Eng Compos Mater 23(1):45–52

    Google Scholar 

  • Xian G, Yin P, Kafodya I, Li H, Wang W (2016) Durability study of ramie fiber fabric reinforced phenolic plates under humidity conditions. Sci Eng Compos Mater 23(1)

    Google Scholar 

  • Xiao X, Lu S, Qi B, Zeng C, Yuan Z, Yu J (2014) Enhancing the thermal and mechanical properties of epoxy resins by addition of a hyperbranched aromatic polyamide grown on microcrystalline cellulose fibers. RSC Adv 4(29):14928

    Article  CAS  Google Scholar 

  • Yang W, Li Y (2012) Sound absorption performance of natural fibers and their composites. Sci China Technol Sci 55(8):2278–2283

    Article  Google Scholar 

  • Yang Z, Fei B, Wang X, Xin J (2011) A novel halogen-free and formaldehyde-free flame retardant for cotton fabrics. Fire Mater 36(1):31–39

    Article  CAS  Google Scholar 

  • Yang Z, Xian G, Li H (2014) Effects of alternating temperatures and humidity on the moisture absorption and mechanical properties of ramie fiber reinforced phenolic plates. Polym Compos 36(9):1590–1596

    Article  CAS  Google Scholar 

  • Yi X, Liu Y (2015) A method for fabricating structure-decorative composites with plant fiber fabrics. PCT-patent in pending

    Google Scholar 

  • Yi X, Li Y (2017) Bio-sourced resins, plant fibers and biocomposites (in Chinese). Construction Industry Press, Beijing

    Google Scholar 

  • Yi X, Zhang X, Ding F, Tong J (2018) Development of bio-sourced epoxies for bio-composites. Aerospace 5(2):65

    Article  Google Scholar 

  • Yi X, Liu Y et al (2019) US20150044924A1—composite having plant fiber textile and fabricating method thereof—Google Patents. Patents.google.com. https://patents.google.com/patent/US20150044924

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly(lactic acid)/ramie composites. Compos A: Appl Sci Manuf 41(4):499–505

    Article  CAS  Google Scholar 

  • Yuan H, Xing W, Zhang P, Song L, Hu Y (2012) Functionalization of cotton with UV-cured flame retardant coatings. Ind Eng Chem Res 51(15):5394–5401

    Article  CAS  Google Scholar 

  • Zhang T, Yan H, Peng M, Wang L, Ding H, Fang Z (2013a) Construction of flame retardant nanocoating on ramie fabric via layer-by-layer assembly of carbon nanotube and ammonium polyphosphate. Nanoscale 5(7):3013

    Article  CAS  Google Scholar 

  • Zhang T, Yan H, Wang L, Fang Z (2013b) Controlled formation of self-extinguishing intumescent coating on ramie fabric via layer-by-layer assembly. Ind Eng Chem Res 52(18):6138–6146

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Ma H, Yu T (2013c) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177

    Article  CAS  Google Scholar 

  • Zhang X, Wu Y, Wei J, Tong J, Yi X (2017) Curing kinetics and mechanical properties of bio-based composite using rosin-sourced anhydrides as curing agent for hot-melt prepreg. SCIENCE CHINA Technol Sci 60(9):1318–1331

    Article  CAS  Google Scholar 

  • Zhu Y, Shi L, Liang J, Hui D, Lau K (2008) Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos Part B 39(7–8):1136–1141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was jointly supported by the National Basic Research Program of China (973 Program) under grant no. 2010CB631100; the National Natural Science Foundation of China (NSFC) under grants no. 51178147, 11172212, and 11625210; the AVIC Innovation Foundation and the joint project ECO-COMPASS co-funded by Chinese MIIT Special Research Program under grant no. MJ-2015-H-G-103; and European Union’s Horizon 2020 Research and Innovation Program under grant agreement no. 690638. They are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosu Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yi, X. et al. (2020). Biopolymers and Biocomposites. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_9

Download citation

Publish with us

Policies and ethics