Skip to main content

Integral, Disruptive, and Multifunctional Aircraft Structures

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes

Abstract

The design of composite structures currently employed in commercial aircraft is closely related to their metallic counterparts. Significant changes to the conventional design philosophy are required to provide competitive solutions for next-generation aircraft. Due to the inherently large design freedom associated with composite material, this can be achieved through a rigorous integral and multifunction design approach. Three highly promising concepts are introduced in this chapter:

  1. 1.

    Disbond-arrest features for adhesively bonded composite joints, which present an enabling technology for integral design solutions.

  2. 2.

    Selective stitching, to enhance the damage tolerance of integral composite structure.

  3. 3.

    Composite sandwich structures that provide the greatest design freedom to integrate structural as well as nonstructural functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Where “U” stands for unstitched, “T” for tufting, “BS” for blind stitching, and “L”, “M,” and “H” for low, medium, and high stitching densities, respectively. The stitching thread materials used are represented by the letters “A” (aramid) and “C” (carbon).

References

  • Airbus Industrie Test Method (2005) Determination of compression strength after impact; AITM1-0010, October 2005

    Google Scholar 

  • Barbosa AQ, da Silva LFM, Ochsner A, Abenojar J, del Real JC (2012) Influence of the size and amount of cork particles on the impact toughness of a structural adhesive. J Adhes 88(4–6):452–470

    Article  CAS  Google Scholar 

  • Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. In: Dryden HL, von Karman T (eds) Advances in applied mechanics, vol 7 of Advances in applied mechanics. Academic Press, New York, pp 55–129

    Google Scholar 

  • Bergan A, Bakuckas J, Awerbuch J, Tan T-M (2014) Assessment of damage containment features of a full-scale PRSEUS fuselage panel. Compos Struct 113:174–185

    Article  Google Scholar 

  • Boermans L (2006) Research on sailplane aerodynamics at delft university of technology. Recent and present developments. In: Netherlands Association of Aeronautical Engineers (NVvL)

    Google Scholar 

  • BOPACS (2016) Boltless assembling of primary aerospace composite structures: final report

    Google Scholar 

  • Brooklyn Decker (2017) Airbus A350 XWB fuselage to final assembly. https://amam92.blogspot.com/2017/11/airbus-a350-xwb-fuselage-to-final.html

  • Dell’Anno G (2007) Effect of tufting on the mechanical behaviour of carbon fabric/epoxy composites. PhD thesis, Cranfield University, Cranfield

    Google Scholar 

  • Erber A, Witzel V, Drechsler K (2009) Damage tolerance of structural stitched CFRP laminates. In: Deutscher Luft- und Raumfahrtkongress

    Google Scholar 

  • Erripis IK (2009) X-55 (acca)

    Google Scholar 

  • European Aviation Safety Agency (n.d.) Amc 20-29: composite aircraft structure

    Google Scholar 

  • Fernandez D, Begemann B, Middendorf P, Horst P (2017) Untersuchung des Beul- und Tragverhaltens von selektiv genahten, versteiften FKV-Paneelen unter mehraxialer Belastung. In DLRK, Munich

    Google Scholar 

  • Fischer S (2011) Rechnerische Ermittlung der mechanischen Eigenschaften von Faltkernen. PhD thesis, Universitt Stuttgart

    Google Scholar 

  • Fujino M (2011) Case study 4 hondajet. Fundamentals of aircraft and airship 616 design, vol 2, pp 615–647

    Google Scholar 

  • Gibson RF (2010) A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct 92(12):2793–2810

    Article  Google Scholar 

  • Grzeschik M, Klett Y, Middendorf P (2018) Reality check—mechanical potential of tessellation-based foldcore materials. In Proceedings of the 7th international meeting on origami in science, mathematics and education

    Google Scholar 

  • Habenicht G (2009) Kleben: Grundlagen, Technologien, Anwendungen. VDI-Buch. Springer, Berlin, 6., aktualisierte aufl. edition

    Book  Google Scholar 

  • Heimbs S, Middendorf P, Hampf C, Hähnel F, Wolf K (2008) Aircraft sandwich structures with folded core under impact load. In Proceedings of the 8th international conference on sandwich structures (ICSS 8), vol 3, 05

    Google Scholar 

  • Herzog J (2016) Airbus A350-941, https://de.m.wikipedia.org/wiki/Datei: Airbus_A350-941_F-WWCF_MSN002_ILA_Berlin_2016_20.jpg

  • Hexcel Composites (2011) Hexweb acousti-core product data. Technical report

    Google Scholar 

  • Ilcewicz L, Smith PJ, Hanson CT, Walker TH, Metschan SL, Mabson GE, Wilden KS (1997) Advanced technology composite fuselage: program overview. Technical report NASA-CR-4734, NASA

    Google Scholar 

  • Jagath Narayana K, Burela RG (2018) A review of recent research on multifunctional composite materials and structures with their applications. Mater Today Proc 5(2):5580–5590

    Article  Google Scholar 

  • Jain LK, Mai YW (1997) Recent work on stitching of laminated composites—theoretical analysis and experiments. In: Scott ML (ed) Eleventh international conference on composite materials, Gold Coast, Queensland, Australia, 14–18th July 1997, proceedings. Australian Composite Structures Society, Melbourne

    Google Scholar 

  • Karahan M, Ulcay Y, Eren R, Karahan N, Kaynak G (2010) Investigation into the tensile properties of stitched and unstitched woven aramid/vinyl ester composites. Text Res J 80(10):880–891

    Article  CAS  Google Scholar 

  • Kempton A (2011) Acoustic liners for modern aero-engines. In: 15th CEAS-ASC workshop and 1st scientific workshop of X-noise EV Lausanne, Switzerland

    Google Scholar 

  • Klett Y (2013) Auslegung multifunktionaler isometrischer Faltstrukturen für den technischen Einsatz. Number ISBN 978-3-8439-1025-5. Institut für Flugzeugbau, Universität Stuttgart

    Google Scholar 

  • Klett Y, Drechsler K (2011) Designing technical tessellations. In: Wang-Iverson P, Lang RJ, Yim M (eds) Origami5, number ISBN 1568817142, pp 305–322. CRC Press

    Google Scholar 

  • Klett Y, Drechsler K, Wentzel H, Kolax M (2007) Design of multifunctional folded core structures for aerospace sandwich applications. In: 1st CEAS European air and space conference

    Google Scholar 

  • Klett Y, Middendorf P, Sobek W, Haase W, Heidingsfeld M (2017a) Potential of origami-based shell elements as next-generation envelope components. In 2017 IEEE international conference on advanced intelligent mechatronics (AIM), pp 916–920

    Google Scholar 

  • Klett Y, Zeger C, Middendorf P (2017b) Experimental characterization of pressure loss caused by flow through foldcore sandwich structures. In: ASME 2017 international design engineering technical conference, vol 5B

    Google Scholar 

  • Kolax M (2004) Concept and technology: advanced composite fuselage structures. JEC Composites, 6/7

    Google Scholar 

  • Kolesnikow B, Herbeck L (2004) Carbon fiber composite airplane fuselage: concept and analysis. Technical report, Deutsches Zentrums fr Luft- und Raumfahrt (DLR)

    Google Scholar 

  • Kruse T, Koerwien T, Heckner S, Geistbeck M (2015) Bonding of CFRP primary aerospace structures—crack stopping in composite bonded joints under fatigue. In 20th international conference on composite materials, Copenhagen

    Google Scholar 

  • Kruse T, Koerwien T, Meer T, Geistbeck M (2018) Certification by means of disbond arrest features and results (EU-FP7 project BOPACS). In: Use of bonded joints in military applications

    Google Scholar 

  • Liu Z, Bae DHO (2011) A study on joining technology of aluminum alloy sheet using nano-adhesives. Int J Mod Phys B 25(31):4265–4268

    Article  CAS  Google Scholar 

  • Löbel T (2016) Disbond stopping concept: hybrid bondline. PhD thesis, Technische Universität Braunschweig

    Google Scholar 

  • Löbel T, Kolesnikov B, Scheffler S, Stahl A, Hühne C (2013) Enhanced tensile strength of composite joints by using staple-like pins: working principles and experimental validation. Compos Struct 106:453–460

    Article  Google Scholar 

  • Nicolais L, Meo M, Milella E (eds) (2011) Composite materials: a vision for the future. Springer, London

    Google Scholar 

  • Pegorin F, Pingkarawat K, Mouritz AP (2015) Comparative study of the mode i and mode ii delamination fatigue properties of z-pinned aircraft composites. Mater Des 65:139–146

    Article  CAS  Google Scholar 

  • RS 510 Blind-Stitch head (2016). www.ksl-lorsch.de

  • Sachse R, Pickett AK, Adebahr W, Klein M, Käß M, Middendorf P (2015) Experimental investigation of mechanical fasteners regarding their influence on crack growth in adhesively bonded CFRP-joints subjected to fatigue loading. In 20th international conference on composite materials, Copenhagen

    Google Scholar 

  • Sachse R, Pickett AK, Middendorf P (2016) Numerical simulation of fatigue crack growth in the adhesive bondline of wide single lap shear specimen. In BOPACS symposium, Hamburg

    Google Scholar 

  • Sachse R, Pickett AK, Essig W, Middendorf P (2017) Experimental and numerical investigation of the influence of rivetless nut plate joints on fatigue crack growth in adhesively bonded composite joints. Int J Fatigue 105:262–275

    Article  Google Scholar 

  • Scarponi C, Perillo AM, Cutillo L, Foglio C (2007) Advanced TTT composite materials for aeronautical purposes: compression after impact (CAI) behaviour. Compos Part B 38(2):258–264

    Article  Google Scholar 

  • Sturm R, Klett Y, Kindervater C, Voggenreiter H (2014) Failure of CFRP airframe sandwich panels under crash-relevant loading conditions. Comp Struct 112:11–21

    Article  Google Scholar 

  • Tan KT, Watanabe N, Iwahori Y (2011) X-ray radiography and micro-computed tomography examination of damage characteristics in stitched composites subjected to impact loading. Compos Part B 42(4):874–884

    Article  Google Scholar 

  • Tomblin J, Salah L, Davies C (2018) Aging effects evaluation of a Beechcraft starship main wing. In FAA Joint Advanced Materials & Structures (JAMS) Center of Excellence 6th annual technical review meeting May 19–20, 2010, 08

    Google Scholar 

  • Tserpes KI, Peikert G, Floros IS (2016) Crack stopping in composite adhesively bonded joints through corrugation. Theor Appl Fract Mech 83:152–157

    Article  Google Scholar 

  • Tufting Head Datasheet (2016). www.ksl-lorsch.de

  • Two Needle Head RS 530 (2016). www.ksl-lorsch.de

  • Velicki A, Jegley D (2011) PRSEUS development for the hybrid wing body aircraft: 100 years of achievement and progress. AIAA Centennial of Naval Aviation Forum, pp 1–11

    Google Scholar 

  • Weimer C, Mitschang P (2001) Aspects of the stitch formation process on the quality of sewn multi-textile-preforms. Compos A: Appl Sci Manuf 32(10):1477–1484

    Article  Google Scholar 

  • Yuan C, Bergsma O, Koussios S, Zu L, Beukers A (2012) Optimization of sandwich composites fuselages under flight loads. Appl Compos Mater 19(1):47–64

    Article  CAS  Google Scholar 

  • Yudhanto A, Lubineau G, Ventura IA, Watanabe N, Iwahori Y, Hoshi H (2015) Damage characteristics in 3D stitched composites with various stitch parameters under in-plane tension. Compos A: Appl Sci Manuf 71:17–31

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronny Sachse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sachse, R., Fernandez, D., Klett, Y., Middendorf, P. (2020). Integral, Disruptive, and Multifunctional Aircraft Structures. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_7

Download citation

Publish with us

Policies and ethics