Skip to main content

Self-Healing Mechanisms in Multifunctional Structural Materials

  • Chapter
  • First Online:
Revolutionizing Aircraft Materials and Processes

Abstract

This chapter is focused on current shortcomings of self-healing materials for their applications in aeronautics. In particular, the critical points, which prevented the application and the widespread use of these materials in aircraft structures, will be discussed. After “the state of the art” on the design of current developed structural self-healing materials and their drawbacks for application as aircraft materials, recent achievements in this field, able to overcome current drawbacks, will be described. The possibility to simultaneously impart other specific functions, which can be integrated in the material together with the auto-repair function, will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amendola E, Dello Iacono S, Pastore A, Curcio M, Giordano M, Iadonisi A (2015) Epoxy thermosets with self-healing ability. J Mater Sci Chem Eng 3:162–167

    CAS  Google Scholar 

  • Annable T, Buscall R, Ettelaie R (1996) Network formation and its consequences for the physical behaviour of associating polymers in solution. Colloids Surf A Physicochem Eng Asp 112:97–116

    Article  CAS  Google Scholar 

  • Beck JB, Rowan SJ (2003) Multistimuli, multiresponsive metallo-supramolecular polymers. J Am Chem Soc 125:13922–13923

    Article  CAS  Google Scholar 

  • Binder WH (2013) In: Binder WH (ed) Self-healing polymers. From principles to applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 440

    Google Scholar 

  • Brown EN, Sottos NR, White SR (2002) Fracture testing of a self-healing polymer composite. Exp Mech 42:372–379

    Article  CAS  Google Scholar 

  • Brown EN, Kessler MR, Sottos NR, White SR (2003) In situ poly(urea-formaldehyde) microencapsulation of dicyclopentadiene. J Microencapsul 20:719–730

    Article  CAS  Google Scholar 

  • Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703–1710

    Article  CAS  Google Scholar 

  • Brown EN, White SR, Sottos NR (2005a) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—part I: manual infiltration. Compos Sci Technol 65:2466–2473

    Article  CAS  Google Scholar 

  • Brown EN, White SR, Sottos NR (2005b) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—part II: in situ self-healing. Compos Sci Technol 65:2474–2480

    Article  CAS  Google Scholar 

  • Cho SH, White SR, Braun PV (2009) Self-healing polymer coatings. Adv Mater 21:645–649

    Article  CAS  Google Scholar 

  • Chowdhury RA, Hosur MV, Nuruddin M, Tcherbi-Narteh A, Kumar A, Boddu V, Jeelani S (2015) Self-healing epoxy composites: preparation, characterization and healing performance. J Mater Res Technol 4:33–43

    Article  CAS  Google Scholar 

  • Chung K, Lee S, Park M, Yoo P, Hong Y (2015) Preparation and characterization of microcapsule-containing self-healing asphalt. J Ind Eng Chem 29:330–337

    Article  CAS  Google Scholar 

  • Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980

    Article  CAS  Google Scholar 

  • Dry C (2007) Multiple function, self-repairing composites with special adhesives. Int Patent WO/2007/005657

    Google Scholar 

  • Eigler S, Hirsch A (2014) Chemistry with graphene and graphene oxide—challenges for synthetic chemists. Angew Chem Int Ed Engl 53:7720–7738

    Article  CAS  Google Scholar 

  • Eigler S, Grimm S, Hof F, Hirsch A (2013) Graphene oxide: a stable carbon framework for functionalization. J Mater Chem A 1:11559–11562

    Article  CAS  Google Scholar 

  • Eisenberg A, Hird B, Moore RB (1990) A new multiplet-cluster model for the morphology of random ionomers. Macromolecules 23:4098–4107

    Article  CAS  Google Scholar 

  • Everitt DT, Luterbacher R, Coope TS, Trask RS, Wass DF, Bond IP (2015) Optimisation of epoxy blends for use in extrinsic self-healing fibre-reinforced composites. Polymer 69:283–292

    Article  CAS  Google Scholar 

  • Faghihnejad A, Feldman KE, Yu J, Tirrell MV, Israelachvili JN, Hawker CJ, Kramer EJ, Zeng H (2014) Adhesion and surface interactions of a self-healing polymer with multiple hydrogen-bonding groups. Adv Funct Mater 24:2322–2333

    Article  CAS  Google Scholar 

  • Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  • Gu X, Qi W, Xu X, Sun Z, Zhang L, Liu W, Pan X, Su D (2014) Covalently functionalized carbon nanotube supported Pd nanoparticles for catalytic reduction of 4-nitrophenol. Nanoscale 6:6609–6616

    Article  CAS  Google Scholar 

  • Guadagno L, Raimondo M (2012) Chapter 14: Use of FTIR analysis to control the self-healing functionality of epoxy resins. In: Theophile T (ed) Infrared spectroscopy—materials science, engineering and technology. InTech, Rijeka, pp 285–300

    Google Scholar 

  • Guadagno L, Longo P, Raimondo M, Naddeo C, Mariconda A, Sorrentino A, Vittoria V, Iannuzzo G, Russo S (2010) Cure behavior and mechanical properties of structural self-healing epoxy resins. J Polym Sci B Polym Phys 48:2413–2423

    Article  CAS  Google Scholar 

  • Guadagno L, Longo P, Raimondo M, Naddeo C, Mariconda A, Vittoria V, Iannuzzo G, Russo S (2011) Use of Hoveyda–Grubbs’ second generation catalyst in self-healing epoxy mixtures. Compos Part B 42:296–301

    Article  CAS  Google Scholar 

  • Guadagno L, Raimondo M, Naddeo C, Longo P (2013) Chapter 17: Application of self-healing materials in aerospace engineering. In: Binder WH (ed) Self-healing polymers: from principles to applications. Wiley-VCH Verlag, Weinheim, pp 401–412

    Chapter  Google Scholar 

  • Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A (2014a) Self-healing materials for structural applications. Polym Eng Sci 54:777–784

    Article  CAS  Google Scholar 

  • Guadagno L, Raimondo M, Naddeo C, Longo P, Mariconda A, Binder WH (2014b) Healing efficiency and dynamic mechanical properties of self-healing epoxy systems. Smart Mater Struct 23:045001. (11 pp)

    Article  CAS  Google Scholar 

  • Guadagno L, Raimondo M, Vertuccio L, Mauro M, Guerra G, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2015) Optimization of graphene-based materials outperforming host epoxy matrices. RSC Adv 5:36969–36978

    Article  CAS  Google Scholar 

  • Guadagno L, Raimondo M, Vietri U, Naddeo C, Stojanovic A, Sorrentino A, Binder WH (2016) Evaluation of the mechanical properties of microcapsule-based self-healing composites. Int J Aeros Eng 2016: Article ID 7817962. (10 pp)

    Google Scholar 

  • Guadagno L, Mariconda A, Agovino A, Raimondo M, Longo P (2017a) Protection of graphene supported ROMP catalyst through polymeric globular shell in self-healing materials. Compos Part B 116:352–360

    Article  CAS  Google Scholar 

  • Guadagno L, Longo P, Mariconda A, Calabrese E, Raimondo M, Naddeo C, Vertuccio L, Russo S, Iannuzzo G (2017b) Grubbs-Hoveyda type catalyst for metathesis reactions in highly reactive environments. European Patent Application EP3141303 (A1)―2017-03-15

    Google Scholar 

  • Guadagno L, Naddeo C, Raimondo M, Barra G, Vertuccio L, Sorrentino A, Binder WH, Kadlec M (2017c) Development of self-healing multifunctional materials. Compos Part B 128:30–38

    Article  CAS  Google Scholar 

  • Guadagno L, Vertuccio L, Naddeo C, Calabrese E, Barra G, Raimondo M, Sorrentino A, Binder WH, Michael P, Rana S (2019) Self-healing epoxy nanocomposites via reversible hydrogen bonding. Compos Part B 157:1–13

    Article  CAS  Google Scholar 

  • Herbst F, Döhler D, Michael P, Binder WH (2013) Self-healing polymers via supramolecular forces. Macromol Rapid Commun 34:203–220

    Article  CAS  Google Scholar 

  • Jin H, Hart KR, Coppola AM, Gergely RC, Moore JS, Sottos NR, White SR (2013) Chapter 15: Self-healing epoxies and their composites. In: Binder WH (ed) Self-healing polymers. From principles to applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 361–380

    Chapter  Google Scholar 

  • Jones AS, Rule JD, Moore JS, White SR, Sottos NR (2006) Catalyst morphology and dissolution kinetics of self-healing polymers. Chem Mater 18:1312–1317

    Article  CAS  Google Scholar 

  • Jones AS, Rule JD, Moore JS, Sottos NR, White SR (2007) Life extension of self-healing polymers with rapidly growing fatigue cracks. J R Soc Interface 4:395–403

    Article  CAS  Google Scholar 

  • Kadlec M, Nováková L, Mlch I, Guadagno L (2016) Fatigue delamination of a carbon fabric/epoxy laminate with carbon nanotubes. Compos Sci Technol 131:32–39

    Article  CAS  Google Scholar 

  • Kessler MR, White SR (2001) Self-activated healing of delamination damage in woven composites. Compos A: Appl Sci Manuf 32:683–699

    Article  Google Scholar 

  • Kessler MR, Sottos NR, White SR (2003) Self-healing structural composite materials. Compos A: Appl Sci Manuf 34:743–753

    Article  CAS  Google Scholar 

  • Liu W, Liu Y, Wang R (2011) MD simulation of single-wall carbon nanotubes employed as container in self-healing materials. Polym Polym Compos 19:333–338

    CAS  Google Scholar 

  • Longo P, Mariconda A, Calabrese E, Raimondo M, Naddeo C, Vertuccio L, Russo S, Iannuzzo G, Guadagno L (2017) Development of a new stable ruthenium initiator suitably designed for self-repairing applications in high reactive environments. J Ind Eng Chem 54:234–251

    Article  CAS  Google Scholar 

  • Mariconda A, Longo P, Agovino A, Guadagno L, Sorrentino A, Raimondo M (2015) Synthesis of ruthenium catalysts functionalized graphene oxide for self-healing applications. Polymer 69:330–342

    Article  CAS  Google Scholar 

  • Motuku M, Vaidya UK, Janowski GM (1999) Parametric studies on self-repairing approaches for resin infused composites subjected to low velocity impact. Smart Mater Struct 8:623–638

    Article  CAS  Google Scholar 

  • Nia AS, Rana S, Döhler D, Osim W, Binder WH (2015) Nanocomposites via a direct graphene-promoted “click”-reaction. Polymer 79:21–28

    Article  CAS  Google Scholar 

  • Osim W, Stojanovic A, Akbarzadeh J, Peterlik H, Binder WH (2013) Surface modification of MoS2 nanoparticles with ionic liquid-ligands: towards highly dispersed nanoparticles. Chem Commun 49:9311–9313

    Article  CAS  Google Scholar 

  • Raimondo M, Guadagno L (2012) Healing efficiency of epoxy-based materials for structural application. AIP Conf Proc 1459:223–225

    Article  CAS  Google Scholar 

  • Raimondo M, Guadagno L (2013) Healing efficiency of epoxy-based materials for structural applications. Polym Compos 34:1525–1532

    Article  CAS  Google Scholar 

  • Raimondo M, Longo P, Mariconda A, Guadagno L (2015) Healing agent for the activation of self-healing function at low temperature. Adv Compos Mater 24:519–529

    Article  Google Scholar 

  • Raimondo M, De Nicola F, Volponi R, Binder W, Michael P, Russo S, Guadagno L (2016) Self-repairing CFRPs targeted towards structural aerospace applications. Int J Struct Integr 7:656–670

    Article  Google Scholar 

  • Rule JD, Brown EN, Sottos NR, White SR, Moore JS (2005a) Wax-protected catalyst microspheres for efficient self-healing materials. Adv Mater 17:205–208

    Article  CAS  Google Scholar 

  • Rule JD, Sottos NR, White SR, Moore JS (2005b) The chemistry of self-healing polymers. Educ Chem 42:130–132

    CAS  Google Scholar 

  • Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  • Sarkar S, Moser ML, Tian X, Zhang X, Al-Hadeethi YF, Haddon RC (2014) Metals on graphene and carbon nanotube surfaces: from mobile atoms to atomtronics to bulk metals to clusters and catalysts. Chem Mater 26:184–195

    Article  CAS  Google Scholar 

  • Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mülhaupt R (2009) Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the Suzuki−Miyaura coupling reaction. J Am Chem Soc 131:8262–8270

    Article  CAS  Google Scholar 

  • Shaygan NA, Rana S, Döhler D, Jirsa F, Meister A, Guadagno L, Koslowski E, Bron M, Binder WH (2015) Carbon-supported copper nanomaterials: recyclable catalysts for Huisgen [3+2] cycloaddition reactions. Chem—A Eur J 21:10763–10770

    Article  CAS  Google Scholar 

  • Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJ, Hirschberg JH, Lange RF, Lowe JK, Meijer EW (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278:1601–1604

    Article  CAS  Google Scholar 

  • Sivakova S, Bohnsack DA, Mackay ME, Suwanmala P, Rowan SJ (2005) Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers. J Am Chem Soc 127:18202–18211

    Article  CAS  Google Scholar 

  • Tam KC, Jenkins RD, Winnik MA, Bassett DR (1998) A structural model of hydrophobically modified urethane−ethoxylate (HEUR) associative polymers in shear flows. Macromolecules 31:4149–4159

    Article  CAS  Google Scholar 

  • Toohey KS, Sottos NR, Lewis JA, Moore JS, White SR (2007) Self-healing materials with microvascular networks. Nat Mater 6:581–585

    Article  CAS  Google Scholar 

  • Toohey KS, Sottos NR, White SR (2009a) Characterization of microvascular-based self-healing coatings. Exp Mech 49:707–717

    Article  CAS  Google Scholar 

  • Toohey KS, Hansen CJ, Lewis JA, White SR, Sottos NR (2009b) Delivery of two-part self-healing chemistry via microvascular networks. Adv Funct Mater 19:1399–1405

    Article  CAS  Google Scholar 

  • van der Zwaag S (2007) In: van der Zwaag S (ed) Self healing materials: an alternative approach to 20 centuries of materials science, Springer Series in Materials, vol 100. Springer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Viscardi M, Arena M, Barra G, Guadagno L (2017) Smart carbon-epoxy laminate with high dissipation properties for vibro-acoustic optimization in the turboprop aircraft. Int J Mech 11:51–57

    Google Scholar 

  • Weng W, Beck JB, Jamieson AM, Rowan SJ (2006) Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J Am Chem Soc 128:11663–11672

    Article  CAS  Google Scholar 

  • White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S (2001) Autonomic healing of polymer composites. Nature 409:794–797

    Article  CAS  Google Scholar 

  • Wilson GO, Moore JS, White SR, Sottos NR, Andersson HM (2008a) Autonomic healing of epoxy vinyl esters via ring opening metathesis polymerization. Adv Funct Mater 18:44–52

    Article  CAS  Google Scholar 

  • Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS (2008b) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20:3288–3297. (Supporting Information)

    Article  CAS  Google Scholar 

  • Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522

    Article  CAS  Google Scholar 

  • Yang S, Bachman RE, Feng X, Müllen K (2013) Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Acc Chem Res 46:116–128

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 760940.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guadagno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guadagno, L., Naddeo, C., Vertuccio, L., Calabrese, E., Barra, G., Raimondo, M. (2020). Self-Healing Mechanisms in Multifunctional Structural Materials. In: Pantelakis, S., Tserpes, K. (eds) Revolutionizing Aircraft Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-35346-9_10

Download citation

Publish with us

Policies and ethics