Do Internal Software Quality Tools Measure Validated Metrics?

  • Mayra Nilson
  • Vard Antinyan
  • Lucas GrenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11915)


Internal software quality determines the maintainability of the software product and influences the quality in use. There is a plethora of metrics which purport to measure the internal quality of software, and these metrics are offered by static software analysis tools. To date, a number of reports have assessed the validity of these metrics. No data are available, however, on whether metrics offered by the tools are somehow validated in scientific studies. The current study covers this gap by providing data on which tools and how many validated metrics are provided. The results show that a range of metrics that the tools provided do not seem to be validated in the literature and that only a small percentage of metrics are validated in the provided tools.


Software metrics tools Static analysis tools Metrics Attributes 


  1. 1.
    Schulmeyer, G.G., McManus, J.I.: Handbook of Software Quality Assurance. Van Nostrand Reinhold Co., New York (1992)Google Scholar
  2. 2.
    Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Computer 26(7), 18–41 (1993)CrossRefGoogle Scholar
  3. 3.
    ISO, I.: IEC 9126–1: Software engineering-product quality-part 1: quality model. International Organization for Standardization 21, Geneva (2001)Google Scholar
  4. 4.
    Nicolette, D.: Software development metrics (2015). (Electronic source)Google Scholar
  5. 5.
    Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)CrossRefGoogle Scholar
  6. 6.
    Santos, M., Afonso, P., Bermejo, P.H., Costa, H.: Metrics and statistical techniques used to evaluate internal quality of object-oriented software: a systematic mapping. In: 2016 35th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–11. IEEE (2016)Google Scholar
  7. 7.
    Carrillo, A.B., Mateo, P.R., Monje, M.R.: Metrics to evalute fuctional quality: A sistematic review. In: 7th Iberian Conference on Information Systems and Technologies (CISTI 2012), pp. 1–6. IEEE (2012)Google Scholar
  8. 8.
    Lincke, R., Lundberg, J., Löwe, W.: Comparing software metrics tools. In: Proceedings of the 2008 International Symposium on Software Testing and Analysis, pp. 131–142. ACM (2008)Google Scholar
  9. 9.
    Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering measurement. IEEE Trans. Softw. Eng. 22(1), 68–86 (1996)CrossRefGoogle Scholar
  10. 10.
    Ordonez, M.J., Haddad, H.M.: The state of metrics in software industry. In: Fifth International Conference on Information Technology: New Generations (ITNG 2008), pp. 453–458. IEEE (2008)Google Scholar
  11. 11.
    Shepperd, M., Ince, D.: Derivation and Validation of Software Metrics. Clarendon Press, Oxford (1993)zbMATHGoogle Scholar
  12. 12.
    de AG Saraiva, J., De França, M.S., Soares, S.C., Fernando Filho, J., de Souza, R.M.: Classifying metrics for assessing object-oriented software maintainability: a family of metrics’ catalogs. J. Syst. Softw. 103, 85–101 (2015)Google Scholar
  13. 13.
    Suresh, Y., Pati, J., Rath, S.K.: Effectiveness of software metrics for object-oriented system. Procedia Technol. 6, 420–427 (2012)CrossRefGoogle Scholar
  14. 14.
    Jabangwe, R., Börstler, J., Šmite, D., Wohlin, C.: Empirical evidence on the link between object-oriented measures and external quality attributes: a systematic literature review. Empirical Softw. Eng. 20(3), 640–693 (2015)CrossRefGoogle Scholar
  15. 15.
    Antinyan, V., Staron, M., Sandberg, A.: Evaluating code complexity triggers, use of complexity measures and the influence of code complexity on maintenance time. Empirical Softw. Eng. 22(6), 3057–3087 (2017)CrossRefGoogle Scholar
  16. 16.
    McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Halstead, M.H.: Elements of Software Science. Elsevier Science, New York (1977)zbMATHGoogle Scholar
  18. 18.
    Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans. Softw. Eng. 5, 510–518 (1981)CrossRefGoogle Scholar
  19. 19.
    Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)CrossRefGoogle Scholar
  20. 20.
    Antinyan, V., et al.: Identifying risky areas of software code in agile/lean software development: an industrial experience report. In: 2014 Software Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), pp. 154–163. IEEE (2014)Google Scholar
  21. 21.
    Tenny, T.: Program readability: procedures versus comments. IEEE Trans. Softw. Eng. 14(9), 1271–1279 (1988)CrossRefGoogle Scholar
  22. 22.
    Buse, R.P., Weimer, W.R.: Learning a metric for code readability. IEEE Trans. Softw. Eng. 36(4), 546–558 (2010)CrossRefGoogle Scholar
  23. 23.
    Alzahrani, M., Melton, A.: Defining and validating a client-based cohesion metric for object-oriented classes. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 1, pp. 91–96. IEEE (2017)Google Scholar
  24. 24.
    Shepperd, M., Ince, D.C.: A critique of three metrics. J. Syst. Softw. 26(3), 197–210 (1994)CrossRefGoogle Scholar
  25. 25.
    Fenton, N.E., Neil, M.: Software metrics: roadmap. In: Proceedings of the Conference on the Future of Software Engineering, pp. 357–370. ACM (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Chalmers, University of GothenburgGothenburgSweden
  2. 2.Volvo CarsGothenburgSweden

Personalised recommendations