Skip to main content

Ultrasound Imaging

  • Chapter
  • First Online:
From Signals to Image
  • 1563 Accesses

Abstract

Synopsis: In this chapter the reader is introduced to the basic physics of acoustic waves. The reader will learn about the interaction between acoustic waves and matter and will learn about attenuation, reflection, and speed of propagation. The reader will be introduced to ultrasonic transducers and acoustic fields, will learn about beam forming and focusing, and will learn about the different acquisition modes used in medical ultrasound and the methodologies implemented for image formation. The reader will also learn how the Doppler effect is utilized for flow imaging and color flow mapping.

The learning outcomes are: The reader will comprehend the mechanisms of ultrasonic wave propagation and the factors that affect their attenuation and reflection, will know how to analyze and utilize the Doppler shift effect, and will be able to generate ultrasound images from reflected echoes and through-transmission waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer RT, Letcher SV. Physical ultrasonic. New York: Academic Press; 1969.

    Google Scholar 

  2. Angelsen BAJ. Ultrasound imaging: waves, signals, and signal processing. Trondhein: Emantec AS; 2000.

    Google Scholar 

  3. Jensen JA. Estimation of blood velocities using ultrasound: a signal processing approach. New York: Cambridge University Press; 1996.

    Google Scholar 

  4. Kinsler LE, Frey P. Fundamentals of acoustics. New York: John Wiley & Sons; 1962.

    MATH  Google Scholar 

  5. Azhari H. Basics of biomedical ultrasound for engineers. Hoboken: Wiley–IEEE Press; 2010.

    Book  Google Scholar 

  6. Gaitini D, Rothstein T, Gallimidi Z, Azhari H. Feasibility study of breast lesion detection using computerized contrast enhanced through-transmission ultrasonic imaging. J Ultrasound Med. 2013;32(5):825–33.

    Article  Google Scholar 

  7. Katz-Hanani I, Rothstein T, Gaitini D, Gallimidi Z, Azhari H. Age related ultrasonic properties of breast tissue in-vivo. Ultrasound Med Biol. 2014;40(9):2265–71.

    Article  Google Scholar 

  8. Greenleaf JF, Johnson SA, Lent AH. Measurement of spatial distribution of refractive index in tissues by ultrasonic computer assisted tomography. Ultrasound Med Biol. 1978;3(4):327–39.

    Article  Google Scholar 

  9. Azhari H, Sazbon D. Volumetric imaging using spiral ultrasonic computed tomography. Radiology. 1999;212(1):270–5.

    Article  Google Scholar 

  10. Ignee A, Atkinson NS, Schuessler G, Dietrich CF. Ultrasound contrast agents. Endosc Ultrasound. 2016;5(6):355–62.

    Article  Google Scholar 

  11. Dietrich CF, Averkiou M, Nielsen MB, et al. How to perform contrast-enhanced ultrasound (CEUS). Ultrasound Int Open. 2017;3:E2–E15.

    Article  Google Scholar 

  12. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    Article  Google Scholar 

  13. Sigrist RMS, Liau J, El Kaffas A, Chammas MC, Willmann JK. Ultrasound elastography: review of techniques and clinical applications. Theranostics. 2017;7(5):1303–29.

    Article  Google Scholar 

  14. Nightingale K. Acoustic radiation force impulse (ARFI) imaging: a review. Curr Med Imaging Rev. 2011;7(4):328–39.

    Article  Google Scholar 

  15. Bruneel C, Torguet R, Rouvaen KM, Bridoux E, Nongaillard B. Ultrafast echotomographic system using optical processing of ultrasonic signals. Appl Phys Lett. 1977;30(8):371–3.

    Article  Google Scholar 

  16. Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(1):102–19.

    Article  Google Scholar 

  17. Montaldo G, Tanter M, Bercoff J, Benech N, Fink M. Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(3):489–506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azhari, H., Kennedy, J.A., Weiss, N., Volokh, L. (2020). Ultrasound Imaging. In: From Signals to Image. Springer, Cham. https://doi.org/10.1007/978-3-030-35326-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35326-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35325-4

  • Online ISBN: 978-3-030-35326-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics