Skip to main content

Prospects for Developing Effective and Competitive Native Strains of Rhizobium Inoculants in Nigeria

  • Chapter
  • First Online:

Abstract

Inoculation is an external rhizobia source aimed at fostering viable root nodulation and hence N2 fixation. It remains a readily available solution in circumstances where specific root nodule rhizobia present in some soils are unable to nodulate cultivated legumes or may not be able to form the much-needed viable symbiotic interaction to complement the amount of N required by the legume hosts. Although inoculation activities have been in vogue in sub-Saharan Africa from the 1950s, the introduction of soya bean (Glycine max) into Nigeria initiated an array of studies on the utilization of inoculants on soya beans in the nation. The introduction of promiscuous (indiscriminate) soya bean cultivars by the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria, significantly further encouraged a new era to the studies. An evaluation of the present status of bacterial inoculants for the current agricultural practice in Nigeria is paramount, particularly regarding the actual status and future utilization. This chapter attempts to identify the present situation and the potential future of inoculated agriculture in Nigeria, vis-à-vis the development of effective and competitive indigenous strains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abaidoo RC, Sanginga N, Okogun JA et al (2007) Genotypic variation of soybean for phosphorus use efficiency and their contribution of N and P to subsequent maize crops in three ecological zones of West Africa. In: Badu-Apraku B, Fakorede MAB, Lum AF et al (eds) Demand-driven technologies for sustainable maize production in West and Central Africa. Proceedings of the fifth biennial regional maize workshop, IITA-Cotonou, Benin Republic, 3–6 May 2005. WECAMAN/IITA, Nigeria, pp 194–224

    Google Scholar 

  • Abaidoo R, Buahen S, Turner A, Dianda M (2013) Bridging the grain legume gap through agronomy. IITA R4D Review. Issue 9. Jan 2013. http://r4dreview.org/2013/01/bridging-the-grain-legume-yield-gap-through-agronomy/. Accessed 24 Sept 2013

  • Abd El-Fattah DA, Eweda WE, Zayed MS, Hassanein MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Ann Agric Sci 58:111–118

    Article  Google Scholar 

  • Ahmad I, Pichtel J, Hayat S (2008) Plant-bacteria interactions: strategies and technique to promote plant growth. Wiley, Weinheim, p 166

    Book  Google Scholar 

  • Akhtar MS, Siddiqui ZA (2009) Effect of phosphate solubilizing microorganisms and Rhizobium sp. on the growth, nodulation, yield and root-rot disease complex of chickpea under field condition. Afr J Biotechnol 8(15):3489–3496

    Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    Article  CAS  Google Scholar 

  • Aliyu IA, Yahaya SM, Yusuf AA (2014a) Effect of pasture rhizobia isolates on nodulation and nitrogen fixation of groundnut (Arachis hypogaea L.). In: Ojeniyi SO, Obi JC, Ibia TO et al (eds) Proceedings of the 38th annual conference of the Soil Science Society of Nigeria (SSSN), held at University of Uyo, Uyo, Nigeria, between 10th and 14th Mar 2014

    Google Scholar 

  • Aliyu IA, Yahaya SM, Gabasawa AI et al (2014b) Response of groundnut to cowpea rhizobia isolates under soils of different management practice. In: Idisi PO, Okoye BC, Idu EE et al (eds) Proceedings of the 48th annual conference of the Agricultural Society of Nigeria (ASN), held by University of Abuja, Abuja Nigeria between 24th and 27th Nov 2014

    Google Scholar 

  • Aliyu IA, Yusuf AA, Atta A (2018) Evaluation of indigenous rhizobial isolates in search for candidate strain for commercial production. Bayero J Pure Appl Sci 11:33–39

    Article  Google Scholar 

  • Alla S, Coba T, Ana R et al (2010) Flavodoxin overexpression reduces cadmium-induced damage in alfalfa root nodules. J Crop Sci Biotechnol 326(1–2):109–121

    Google Scholar 

  • Al-Nahidh S, Gomah AHM (1991) Response of wheat to dual inoculation with VA –mycorrhiza, and Azospirillum, fertilized with NPK and irrigated with sewage effluent. Arid Soil Res Rehabil 5:83–96

    Article  CAS  Google Scholar 

  • Alori ET, Babalola OO (2018) Microbial inoculants for improving crop quality and human health in Africa. Front Microbiol 9:1–12

    Article  Google Scholar 

  • Amarger N (2001) Rhizobia in the field. Adv Agron 73:109–168

    Article  CAS  Google Scholar 

  • Ampadu-Boakye T, Stadler M, Kanampiu F (2017) N2Africa annual report 2016, p 89. www.N2Africa.org

  • Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68:4025–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anne T, Bala A, Abaidoo R et al (2011) N2Africa annual country reports 2011, p 129

    Google Scholar 

  • Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J (2017) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10:19–21

    Article  PubMed  Google Scholar 

  • Bala A (2008) Recent advances in soybean inoculum research and applications: Towards enhancing productivity in smallholder agriculture, paper presented at an International Workshop on Rhizobium Inoculation, held at Impala Hotel, Arusha Tanzania, 17–21 March, 2008

    Google Scholar 

  • Bala A (2011a) Update on Inoculant production by cooperating laboratories. Milestone reference number: 3.4.3. N2Africa, Oct 2011, p 8

    Google Scholar 

  • Bala A (2011b) Emerging challenges in cross-border movement of inoculants in sub-Saharan Africa. N2Africa project (Putting Nitrogen fixation to work for smallholder farmers in Africa). Podcaster 8, Aug 2011

    Google Scholar 

  • Bala A, Giller KE (2007) Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr Cycl Agroecosyst 76(2–3):319–330

    Article  Google Scholar 

  • Baldwin IL, Fred EB (1929) Root-nodulating bacteria of leguminosae. J Bacteriol 17:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard RA, Shepherd BR, Charman N (2003) Nodulation and growth of pasture legumes with naturalised soil rhizobia. 3. Lucerne (Medicago sativa L.). Aust J Exp Agric 43:135–140

    Article  Google Scholar 

  • Barea JM (1997) Mycorriza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi K, Homma Y et al (eds) Plant growth-promoting Rhizobacteria-present status and future prospects. Sapporo, Faculty of Agriculture, Hokkaido Univerisity, pp 150–158

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997a) Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997b) Short- and medium-term avenues for Azospirillum inoculation. In: Ogoshi A, Kobayashi K, Homma et al (eds) Plant growth-promoting Rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, pp 130–149

    Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bashan Y, De-Bashan LE, Prabhu SR (2016) Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In: Agric. Important Microorg. Springer, Singapore, pp 15–46

    Chapter  Google Scholar 

  • Belimov AA, Kojemiakov AP, Chuvarliyeva CV (1995) Interaction between barley and mixed cultures of nitrogen fixing and phosphate-solubilizing bacteria. Plant Soil 173:29–37

    Article  CAS  Google Scholar 

  • Bergey DH, Harrison FC, Breed RS et al (1923) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Beynon JL, Josey DP (1980) Demonstration of heterogeneity in a natural population of Rhizobium phaseoli using variation in intrinsic antibiotic resistance. J Gen Microbiol 118:437–442

    Google Scholar 

  • Bohlool BB, Schmidt EL (1973) Persistence and competition aspects of Rhizobium japonicum observed in soil by immunofluorescence microscopy. Soil Sci Soc Am J 37:561–564

    Article  Google Scholar 

  • Boivin C, Ndoye I, Lortet G et al (1997) The Sesbania root symbionts Sinorhizobium saheli and S. teranga bv. sesbaniae can form stem nodules on Sesbania rostrata, although they are less adapted to stem nodulation than Azorhizobium caulinodans. Appl Environ Microbiol 63:1040–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botha WJ, Jaftha JB, Bloem JF et al (2004) Effect of soil Bradyrhizobia on the success of soybean inoculant strain CB 1809. Microbiol Res 159:219–231

    Article  CAS  PubMed  Google Scholar 

  • Brenner C (1996) Integrating biotechnology in agriculture: Incentives, constraints and country experiences. Development Centre Studies, OECD, Paris

    Google Scholar 

  • Brockwell J, Bottomley PJ (1995) Recent advances in inoculant technology and prospects for the future. Soil Biol Biochem 27:683–697

    Article  CAS  Google Scholar 

  • Brockwell J, Bottomley PJ, Thies JE (1995) Manipulation of rhizobia microflora for improving crop productivity and soil fertility: a critical assessment. Plant and Soil, 174:143–180

    Article  CAS  Google Scholar 

  • Bromfield ESP, Ayanaba A (1980) The efficacy of soybean inoculation on acid soil in tropical Africa. Plant Soil 54:95–106

    Article  CAS  Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho TL, Ferreira PC, Hemerly AS (2011) Tropical plant biology: sugarcane genetic controls involved in the association with beneficial endophytic nitrogen fixing bacteria. J Crop Sci Biotechnol 4(1):31–41

    Google Scholar 

  • Cassien B, Woomer PL (1998) Recent history of the BNF activities at the Institut des sciences Agronomique du Rwanda. In: Dakora FD (ed) Biological nitrogen fixation in Africa: linking process to progress. African Association for Biological Nitrogen Fixation, Cape Town, pp 33–34

    Google Scholar 

  • Cheng Q (2008) Perspectives in biological nitrogen fixation research. J Integr Plant Biol 50:786–798

    Article  CAS  PubMed  Google Scholar 

  • Chianu JN, Nkonya EM, Mairura FS et al (2011) Biological nitrogen fixation and socioeconomic factors for legume production in sub-Saharan Africa: a review. Agron Sustain Dev 31:139–154

    Article  Google Scholar 

  • Cummings SP (2005) The role and future potential of nitrogen fixing bacteria to boost productivity in organic and low-input sustainable farming systems. Environ Biotechnol 1(1):1–10

    Google Scholar 

  • Date RA (2000) Inoculated legumes in cropping systems of the tropics. Field Crop Res 65(2–3):123–136

    Article  Google Scholar 

  • Dekak A, Chabi R, Menasria T, Benhizia Y (2018) Phenotypic characterization of rhizobia nodulating legumes Genista microcephala and Argyrolobium uniflorum growing under arid conditions. J Adv Res 14:35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deneyschen T, Strijdom BW, Law IJ (1998) Comparison of South African legume inoculants manufactured in 1978-79 and in 1995-97. In: Dakora FD (ed) Biological nitrogen fixation in africa: linking process to progress. African Association for Biological Nitrogen Fixation, Cape Town, pp 50–51

    Google Scholar 

  • Devi V, Sumathy VJH (2018) Production of biofertilizers from agro-wastes. Int J Eng Techn 4(1):453–466

    Google Scholar 

  • Döbereiner J, Day JM (1976) Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. In: Newton WE, Nyman CJ (eds) Proceedings of the first international symposium on nitrogen fixation, vol 2. Washington State University Press, Pullman, WA, pp 518–538

    Google Scholar 

  • Eardly BD, Materon LA, Smith NH et al (1990) Genetic structure of natural populations of the nitrogen-fixing bacterium Rhizobium meliloti. Appl Environ Microbiol 56:187–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Ramady H, El-Ghamry A, Mosa A, Alshaal T (2018) Nanofertilizers vs. biofertilizers: new insights. Environ Biodivers Soil Secur 2:40–50. https://doi.org/10.21608/jenvbs.2018.3880.1029

    Article  Google Scholar 

  • El-Shanshoury AR (1995) Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis, in relation to their effect on wheat development. J. Agron. Crop Sci. 175 (2):119-127

    Article  Google Scholar 

  • El-Yazeid AA, Abou-Aly HA, Mady MA, Moussa SAM (2007) Enhancing growth, productivity and quality of squash plants using phosphate dissolving microorganisms (bio phosphor) combined with boron foliar spray. Res J Agric Biol Sci 3(4):274–286

    Google Scholar 

  • Fabbri P, Del Gallo (1995) Specific interaction between chickpea (Cicer arietinum L.) and three chickpea-rhizobium strains inoculated singularly and in combination with Azospirillum brasilense Cd. In: Azospirillum VI and related microorganisms. https://doi.org/10.107/978-3-642-8_28

  • Flouri F, Sini K, Balis C (1995) Interactions between Azospirillum and Phialophora radicicola. NATO ASI Ser G 37:231–237

    Google Scholar 

  • FMARD (2016) The agriculture promotion policy (2016–2020): building on the successes of the ATA, Closing Key Gaps. Policy and Strategy Document of the Federal Ministry of Agriculture and Rural Development, Nigeria

    Google Scholar 

  • Frank B (1889) Über die Pilzsymbiose der Leguminosen, vol 19. Verlog von Paul Parey, Berlin

    Google Scholar 

  • Fred EB, Baldani JI, McCoy E (1932) Root nodule bacteria and legume plants. University of Wisconsin, Madison, WI

    Google Scholar 

  • Gage DJ (2017) 2004 Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev 68:203

    Google Scholar 

  • Garbaye L (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  PubMed  Google Scholar 

  • Garrison T (2006) Essentials of oceanography, 4th edn. Thomson Learning Academic Resource Center, Belmont, p 368

    Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CAB International, Wallingford, p 423

    Book  Google Scholar 

  • Gori A, Favilli F (1995) First results on individual and dual inoculation with Azospirillum-Glomus on wheat. In: Fendrik I, Del Gallo M, Vanderleyden J, de Zamaroczy M (eds) Azospirillum VI and related microorganisms, genetics-physiology-ecology, NATO ASI series, series G: ecological sciences, vol G37. Springer, Berlin, pp 245–249

    Chapter  Google Scholar 

  • Graham PH, Sadowsky MJ, Keyser HH (1991) Proposed minimum standards for the description of new genera and species of root-and stem-nodulating bacteria. Int J Syst Bacteriol 41:582–587

    Article  Google Scholar 

  • Grönemeyer JL, Reinhold-Hurek B (2018) Diversity of bradyrhizobia in Subsahara Africa: a rich resource. Front Microbiol 9:2194. https://doi.org/10.3389/fmicb.2018.02194

    Article  PubMed  PubMed Central  Google Scholar 

  • Grönemeyer JL, Kulkarni A, Berkelmann D et al (2014) Rhizobia indigenous to the Okavango region in sub-Saharan Africa: diversity, adaptations, and host specificity. Appl Environ Microbiol 80(23):7244–7257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta RA, Kalia A, Kapoor S (2007) In: Jain SP (ed) Bioinoculants: a step towards sustainable agriculture. New India Publishing Agency, New Delhi, pp 4–5

    Google Scholar 

  • Han TX, Wang ET, Han LL et al (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301

    Article  PubMed  CAS  Google Scholar 

  • Hardarson G, Bunning S, Montanez A et al (2003) The value of symbiotic nitrogen fixation by grain legumes in comparison to the cost of nitrogen fertiliser used in developing countries. In: Hardarson G, Broughton W (eds) Maximizing the use of biological nitrogen fixation in agriculture. Kluwer, Dordrecht, pp 213–220

    Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM et al (2003) Molecular signals and receptors controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Hungria M, Andrade DS, Chueire LMO (2000) Isolation and characterisation of new efficient and competitive bean (Phaseolus vulgaris L.) rhizobia from Brazil. Soil Biol Biochem 32:1515–1528

    Article  CAS  Google Scholar 

  • Hungria M, Loureiro MF, Mendes IC et al (2005) Inoculant preparation, production and application. In: Nitrogen fixat. agric. for. ecol. environ. Springer, Dordrecht, pp 223–253

    Google Scholar 

  • IFDC (International Fertilizer Development Center) (2008) Soaring fertilizer prices threaten world’s poorest farmers. http://ifdc.org/New_Layout/News_PressReleases/index.html

  • Jones C, Olson-Rutz K (2018) Inoculation and nitrogen management to optimize pulse crop yield and protein. Crop Soils 51:12

    Article  Google Scholar 

  • Kaljeet S, Keyeo F, Amir HG (2011) Influence of carrier materials and storage temperature on survivability of rhizobial inoculant. Asian J Plant Sci 10:331–337

    Article  Google Scholar 

  • Khan MS, Zaidi A, Musarral J (2010) Microbes for legume improvement. Springer, Wein

    Book  Google Scholar 

  • Khojely DM, Ibrahim SE, Sapey E, Han T (2018) History, current status, and prospects of soybean production and research in sub-Saharan Africa. Crop J 6:226–235

    Article  Google Scholar 

  • Khonje DJ (1989) Adoption of Rhizobium inoculation technology for pasture improvement in sub-Saharan Africa. Department of Agricultural Research, Chitedze Agricultural Research Station, Lilongwe, p 14

    Google Scholar 

  • Kloepper JW (1994) Plant growth promoting rhizobacteria: other systems. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, FL, pp 137–166

    Google Scholar 

  • Koskey G, Mburu SW, Kimiti JM et al (2018) Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.00968

    Article  Google Scholar 

  • Kueneman EA, Root WR, Dashiel KE, Hohenberg J (1984) Breeding soybeans for the tropics capable of nodulating effectively with indigenous Rhizobium spp. Plant Soil 8:387–396

    Article  Google Scholar 

  • Laditi MA, Nwoke OC, Jemo M et al (2012) Evaluation of microbial inoculants as biofertilizers for the improvement of growth and yield of soybean and maize crops in savanna soils. Afr J Agri Res 7(3):405–413

    Google Scholar 

  • Laguerre GP, Allard MR, Revoy F, Amarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larnier JE, Jordan DL, Speras FJ et al (2005) Peanut response to inoculation and nitrogen fertilizer. Agron J 97:79–84

    Google Scholar 

  • Law IJ, Botha WJ, Majaule UC, Phalane FL (2007) Symbiotic and genomic diversity of ‘cowpea’ bradyrhizobia from soils in Botswana and South Africa. Biol Fertil Soils 43:653–663

    Article  Google Scholar 

  • Leite J, Passos SR, Simões-Araújo JL et al (2018) Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian J Microbiol 49:703–713

    Article  CAS  Google Scholar 

  • Li W, Raoult D, Fournier P (2009) Bacterial strain typing in the genomic era. FEMS Microbiol Rev 33:892–916

    Article  CAS  PubMed  Google Scholar 

  • Lindström K (1989) Rhizobium galegae, a new species of legume root nodule bacteria. Int J Syst Bacteriol 39(3):365–367

    Article  Google Scholar 

  • Lόpez-Bellido L, Lόpez-Bellido RJ, Redondo R, Benítez J (2006) Faba bean nitrogen fixation in a wheat-based rotation under rain fed Mediterranean conditions: effect of tillage system. Field Crops Res 98:253–260

    Article  Google Scholar 

  • Macdonald RM (1989) An overview of crop inoculation. In: Campbell R, Macdonald RM (eds) Microbial inoculation of crop plants (special publication of the society of general microbiology). IRL Press, New York, pp 1–9

    Google Scholar 

  • Macdonald C, Singh B (2014) Harnessing plant-microbe interactions for enhancing farm productivity. Bioengineered 5(1):5–9

    Article  PubMed  Google Scholar 

  • Machido DA, Olufajo OO, Yakubu SE, Yusufu SS (2011) Enhancing the contribution of the legumes to the N fertility of soils of the semi-arid zone of Nigeria. Afr J Biotechnol 10(10):1848–1853

    Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:1–12. https://doi.org/10.1100/2012/491206

    Article  Google Scholar 

  • Manvika S, Bhavdish NJ (2006) Taxonomy of rhizobia: current status. Curr Sci 90(4):486–487

    Google Scholar 

  • Margenot AJ, Griffin DE, Alves BSQ et al (2018) Substitution of peat moss with softwood biochar for soil-free marigold growth. Ind Crop Prod 112:160–169

    Article  CAS  Google Scholar 

  • Massol-Deya AA, Odelson DA, Hickey RF, Tiedje JM (1995) Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In: ADL A, van Elsas JD, de Bruijn FJ (eds) Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dortrecht

    Google Scholar 

  • Minchin FR, James EK, Becana M (2008) Oxygen diffusion, production of reactive oxygen and nitrogen species, and antioxidants in legume nodules. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing Leguminous symbioses. Springer Science, Berlin, pp 321–362

    Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agri Biol Sci 7(5):307–316

    Google Scholar 

  • Moulin L, Chen WM, Béna G et al (2002) Rhizobia: the family is expanding. In: Nitrogen fixation. Global perspectives. CABI Publishing, New York, pp 61–65

    Google Scholar 

  • Mugabe J (1994) Research on biofertilizers: Kenya, Zimbabwe and Tanzania. Biotechnol Dev Monit 18:9–10

    Google Scholar 

  • Musiyiwa K, Mpepereki S, Giller KE (2005) Physiological diversity of rhizobia nodulating promiscuous soybean in Zimbabwean soils. Symbiosis 40:97–107

    Google Scholar 

  • Mpepereki S, Javaheri F, Davis P, Giller KE (2000) Soyabeans and sustainable agriculture. Prosmicuous soybean in South Africa. Field Crops Research 65(2–3):137–149

    Article  Google Scholar 

  • N2Africa (Putting Nitrogen fixation to work for smallholder farmers in Africa) (2013) Objective 4. Deliver legume and inoculant technologies to farmers throughout sub-Saharan Africa. http://www.n2africa.org/objectives/objective_4. Accessed 14 Sept 2013

  • Naab JB, Chimphango SMB, Dakora FD (2009) N2 fixation in cowpea plants grown in farmers’ fields in the Upper West Region of Ghana, measured using15N natural abundance. Symbiosis 48:37–46

    Article  CAS  Google Scholar 

  • Nangju D (1980) Soybean response to indigenous rhizobia as influenced by cultivar origin. Agronomy 72:403–406

    Article  Google Scholar 

  • Ncube B, Twomlow SJ, van Wijk MT et al (2007) Productivity and residual benefits of grain legumes to sorghum under semi-arid conditions in south western Zimbabwe. Plant Soil 299:1–15. https://doi.org/10.1007/s11104-007-9330-5

    Article  CAS  Google Scholar 

  • Ndakidemi PA, Dakora FD, Nkonya EM et al (2006) Yield and economic benefits of common bean (Phaseolus vulgaris) and soybean (Glycine max) inoculation in northern Tanzania. Aust J Exp Agric 46:571–577

    Article  Google Scholar 

  • Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Nat Sci 7:540–556

    Article  Google Scholar 

  • Nehring R, Vialou A, Erickson K, Sandretto C (2008) Assessing economic and environmental impacts of ethanol production on fertilizer use in corn. In: Annual meeting, Feb 2–6, Dallas, Texas 6736, Southern Agricultural Economics Association

    Google Scholar 

  • Nelson LM (2004) Plant growth promoting rhizobacteria (PGPR): prospects for new inoculants. Crop Manag. https://doi.org/10.1094/CM-2004-0301-05-RV

    Article  Google Scholar 

  • Nour SM, Cleyet-Marel JC, Beck D et al (1994) Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Can J Microbiol 40:345–354

    Article  CAS  PubMed  Google Scholar 

  • Nyoki D, Ndakidemi PA (2013) Economic benefits of Bradyrhizobium japonicum inoculation and phosphorus supplementation in cowpea (Vigna unguiculata (L.) Walp) grown in northern Tanzania. Am J Res Com 1(11):321–332

    Google Scholar 

  • O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Odair A, Glaciela K, Mariangela H (2006) Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean. J Soil Biol Biochem 38:1298–1307

    Article  CAS  Google Scholar 

  • Odame H (1997) Biofertilizer in Kenya: research, production and extension dilemmas. Biotechnol Dev Monit 30:2023

    Google Scholar 

  • Okereke GU, Onoci CC, Onyeagba E (2001) Effectiveness of foreign Bradyrhizobium in enhancing nodulation, dry matter and seed yield of soybean cultivars in Nigeria. Biol Fertil Soils 33:3–9

    Article  Google Scholar 

  • Okogun JA, Sanginga N (2003) Can introduced and indigenous rhizobial strains compete for nodule formation by promiscuous soybean in the moist savanna agroecological zone of Nigeria? Biol Fertil Soils 38:26–31

    Article  Google Scholar 

  • Okogun JA, Otuyemi BT, Sanginga N (2004) Soybean yield determinants and response to rhizobial inoculation in on-farm trial in the northern Guinea savanna of Nigeria. West Afr J App Ecol 6:30–39

    Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Ollivier J, We ST, Bannert A et al (2011) Nitrogen turnover in soil and global change. FEMS Microbiol Ecol 78:3–16

    Article  CAS  PubMed  Google Scholar 

  • Oruru MB, Njeru EM (2016) Upscaling arbuscular mycorrhizal symbiosis and related agroecosystems services in smallholder farming systems. BioMed Res Int 4376240:12

    Google Scholar 

  • Osalor P (2016) Nigerian economic recession and entrepreneurial revolution. Vanguard Online Newspaper of 26th Sept 2016

    Google Scholar 

  • Osei O, Abaidoo RC, Ahiabor BDK et al (2018) Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts. Appl Soil Ecol 127:41–50

    Article  PubMed  PubMed Central  Google Scholar 

  • Osunde AO, Gwam S, Bala A et al (2003) Responses to rhizobial inoculation by two promiscuous soybean cultivars in soils of the southern Guinea savanna of Nigeria. Biol Fertil Soils 37:274–279

    Article  Google Scholar 

  • Perret X, Jabbouri S, Broughton WJ (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierre C, Simon CA (2010) Iron uptake and homeostasis in microorganisms. Caister Academic Press, Norfolk

    Google Scholar 

  • Pinero D, Martinez E, Selander RK (1988) Genetic diversity and relationships among isolates of Rhizobium leguminosarum biovar phaseoli. Appl Environ Microbiol 54:2825–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pule-Meulenberg F, Belane AK, Krasova-Wade T, Dakora FD (2010) Symbiotic functioning and bradyrhizobial biodiversity of cowpea (Vigna unguiculata L. Walp.) in Africa. BMC Microbiol 10:89. https://doi.org/10.1186/1471-2180-10-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulver EL, Brockman F, Wien HC (1982) Nodulation of soybean cultivars with Rhizobium spp. and their response to inoculation with R. japonicum. Crop Sci 22:1065–1070

    Article  Google Scholar 

  • Purchase HF, Vincent JM, Ward LM (1951) The field distribution of strains of nodule bacteria from species of Medicago. Aust J Agric Res 2:261–272

    Article  Google Scholar 

  • Ranga-Rao V, Thottapilly G, Ayanaba A (1981) Studies on the persistence of introduced strains of Rhizobium japonicum in soil during fallow and effects on soybean growth and yield. In: BNF technology for tropical agriculture, pp 309–315

    Google Scholar 

  • Ranga-Rao V, Ayanaba A, Eaglesham ARJ, Thottappilly G (1984) Effects of Rhizobium inoculation on field-grown soybeans in Western Nigeria and assessment of inoculum persistence during a two-year fallow. Trop Agric 62:125–130

    Google Scholar 

  • Rascio N, Rocca NL (2008) Biological nitrogen fixation. In: Encyclopedia of ecology. University of Padua, Padua, pp 412–419

    Chapter  Google Scholar 

  • Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113. https://doi.org/10.1016/B978-0-12-407679-2.00003-X

    Article  CAS  PubMed  Google Scholar 

  • Roesch LF, Quadros PD, Camargo FA, Triplett EW (2007) Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. J Microbiol Biotechnol 23(10):1377–1383

    Article  CAS  Google Scholar 

  • Ronner E, Franke AC, Vanlauwe B et al (2016) Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crop Res 186:133–145

    Article  Google Scholar 

  • Rubenchik LI (1963) Azotobacter and its use in agriculture. In: Academy of sciences of the Ukrainian SSR, Microbiological Institute D.K. Zabolotnyi. Israel programme for scientific translations, Jerusalem. 65 p. (from a Russian text published in 1960)

    Google Scholar 

  • Ruíz-Valdiviezo VM, Canseco LMCV, Suárez LAC et al (2015) Symbiotic potential and survival of native rhizobia kept on different carriers. Brazilian J Microbiol 46:735–742

    Article  CAS  Google Scholar 

  • Rurangwaa E, Bernard V, Giller KE (2018) Benefits of inoculation, P fertilizer and manure on yields of common bean and soybean also increase yield of subsequent maize. Agric Ecosyst Environ 261:219–229

    Article  Google Scholar 

  • Safronova V, Belimov A, Sazanova A et al (2019) Two broad host range rhizobial strains isolated from relict legumes have various complementary effects on symbiotic parameters of co-inoculated plants. Front Microbiol 10:1–14. https://doi.org/10.3389/fmicb.2019.00514

    Article  Google Scholar 

  • Sanchez C, Tortosa G, Granados A et al (2011) Involvement of Bradyrhizobium japonicum denitrification in symbiotic nitrogen fixation by soybean plants subjected to flooding. Appl Soil Ecol 43:212–217

    CAS  Google Scholar 

  • Sanginga N (2003) Role of biological nitrogen fixation in legume-based cropping systems; a case study of West Africa farming systems. Plant Soil 252:25–39

    Article  CAS  Google Scholar 

  • Sanginga N, Mulongoy K, Ayanaba A (1988) Nitrogen contribution of Leucaena/Rhizobium symbiosis to soil and a subsequent maize crop. Plant Soil 112:137–141

    Article  CAS  Google Scholar 

  • Sanginga N, Danso SKA, Mulongoy K, Ojeifo AA (1994) Persistence and recovery of introduced rhizobium 10 years after inoculation on Leucaena Leucocephala grown on Alfisol in southwestern Nigeria. Plant Soil 159:199–204

    Article  Google Scholar 

  • Sanginga N, Okogun JA, Vanlauwe B, Diels J, Dashiell K (2001) Contribution of nitrogen fixation to the maintenance of soil fertility with emphasis on promiscuous soybean maize-based cropping systems in the moist savanna of West Africa. In: Tian G, Ishida F, Keatinge JDH (Eds.) Sustaining soil fertility in West Africa. American Society of Agron, Madison, pp 157–178

    Google Scholar 

  • Seshadri R, Reeve WG, Ardley JK et al (2015) Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria. Sci Rep 5:1–9. https://doi.org/10.1038/srep16825

    Article  CAS  Google Scholar 

  • Sessitsch A, Hardarson G, Akkermans ADL, de Vos WM (1997) Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol Ecol 6:601–608

    Article  CAS  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X et al (2002) Advances in rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Simon Z, Mtei K, Gessesse A, Ndakidemi PA (2014) Isolation and characterization of nitrogen fixing rhizobia from cultivated and uncultivated soils of northern Tanzania. Am J Plant Sci 5:4050–4067

    Article  CAS  Google Scholar 

  • Sivestre P (1970) Travaux de l’IRAT sur le soya, Ford Foundation Grain Legume Seminar, Jun 22–26, Ibadan, Nigeria

    Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Song K, Xue Y, Zheng X et al (2017) Effects of the continuous use of organic manure and chemical fertilizer on soil inorganic phosphorus fractions in calcareous soil. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-01232-2

    Article  CAS  Google Scholar 

  • Strijdom BW (1998) South African studies on biological nitrogen-fixing systems and the exploitation of the nodule bacterium-legume symbiosis. S Afr J Sc 94:11–23

    CAS  Google Scholar 

  • Strijdom BW, van Rensburg J (1981) Effect of steam sterilization and gamma irradiation of peat on the quality of rhizobium inoculants. Appl Environ Microbiol 41, 1344–1347

    Google Scholar 

  • Suzuki Y, Adhikari D, Itoh K, Suyama K (2014) Effects of temperature on competition and relative dominance of Bradyrhizobium japonicum and Bradyrhizobium elkanii in the process of soybean nodulation. Plant Soil 374:915–924

    Article  CAS  Google Scholar 

  • Tang WH (1994) Yield-increasing bacteria (YIB) and biocontrol of sheath blight of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Division of Soils CSIRO, Adalaide, pp 267–273

    Google Scholar 

  • Tang WH, Yang H (1997) Research and application of biocontrol of plant diseases and PGPR in China. In: Ogoshi A, Kobayashi K, Homma Y et al (eds) Plant growth-promoting rhizobacteria-present status and future prospects. Faculty of Agriculture, Hokkaido University, Sapporo, pp 4–9

    Google Scholar 

  • The Economist Intelligence Unit (2014) Food security in focus: Sub-Saharan Africa. http://foodsecurityindex.eiu.com/

  • Thies J, Holmes EM, Vachot A (2001) Application of molecular techniques to studies in rhizobium ecology: a review. Aust J Exp Agric 41:299–319

    Article  CAS  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21:941–945

    Article  Google Scholar 

  • Udvardi M, Brodie EL, Riley W et al (2015) Impacts of agricultural nitrogen on the environment and strategies to reduce these impacts. Procedia Environ Sci 29:303

    Article  CAS  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes. Field Crops Res 65:211–228

    Article  Google Scholar 

  • Van Berkum PB (2002) USDA-ARS National rhizobium germplasm collection. http://www.ars.usda.gov/is/np/systematics/rhizobium.htm. Accessed 24 May 2013

  • Van Berkum P, Elia P, Eardly BD (2006) Multilocus sequence typing as an approach for population analysis of Medicago-nodulating rhizobia. J Bacteriol 188:5570–5577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Heerwaarden J, Baijukya F, Kyei-Boahen et al (2018) Soya bean response to rhizobium inoculation across sub-Saharan Africa: patterns of variation and the role of promiscuity. Agric Ecosyst Environ 261:211–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Rensburg H, Strijdom BW (1969) Strains of Rhizobium japnicum and inoculant production in South Africa, Phytophylactica 1, 201-204. Fertil Soils 38:26–31

    Google Scholar 

  • Van Spanning RJ, Delgado MJ, Richardson DJ (2005) The nitrogen cycle: de-nitrification and its relationship to N2 fixation. In: Werner D, Newton WE (eds) Nitrogen fixation in agriculture, forestry, ecology and the environment. Springer, Dordrecht, pp 277–342

    Chapter  Google Scholar 

  • Van Spanning RJ, Richardson DJ, Ferguson SJ (2007) Introduction to the biochemistry and molecular biology of denitrification. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 3–20

    Chapter  Google Scholar 

  • Vance CP, Graham PH, Allan DL (2000) Biological nitrogen fixation. Phosphorus: a critical future need. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer Academic Publishers, Dordrecht, pp 506–514

    Google Scholar 

  • Vanlauwe B, Giller KE (2006) Popular myths around soil fertility management in sub-Saharan Africa. Agric Ecosyst Environ 116:34–46

    Article  Google Scholar 

  • Vessey JK, Pawlowski K, Bergman B (2005) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp. and cycads. J Crop Sci Biotechnol 274:51–78

    CAS  Google Scholar 

  • Walley FL, Clayton GW, Miller PR et al (2007) Nitrogen economy of pulse crop production in the Northern Great Plains. J Agron 99:1710–1718

    Article  CAS  Google Scholar 

  • Westhoek A, Field E, Rehling F et al (2017) Policing the legume-Rhizobium symbiosis: a critical test of partner choice. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-01634-2

    Article  CAS  Google Scholar 

  • Wheelis M (2008) Principles of modern microbiology. Jones and Bartlett Publishers, Sudbury, MA, pp 187–188

    Google Scholar 

  • Wolde-meskel E, van Heerwaarden J, Abdulkadir B et al (2018) Additive yield response of chickpea (Cicer arietinum L.) to rhizobium inoculation and phosphorus fertilizer across smallholder farms in Ethiopia. Agric Ecosyst Environ 261:144–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadvinder-Singh BS, Ladha JK, Khind CS et al (2004) Long-term effects of organic inputs on yield and soil fertility in the rice-wheat rotation. Soil Sci Soc Am J 68:845–853

    CAS  Google Scholar 

  • Yakubu H, Kwari JD, Ngala AL (2010) N2 fixation by grain legume varieties as affected by rhizobia inoculation in the sandy loam soil of Sudano-Sahelian zone of northeastern Nigeria. Nigerian J Basic Appl Sci 18(2):229–236

    Google Scholar 

  • Yan Y, Ping S, Peng J et al (2010) Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri. J Crop Sci Biotechnol 11:11–18

    Google Scholar 

  • Young JPW (1996) Phylogeny and taxonomy of rhizobia. Plant Soil 186:45–52

    Article  CAS  Google Scholar 

  • Yusuf AA, Iwuafor ENO, Abaidoo RC et al (2009) Grain legume rotation benefits to maize in the northern Guinea savanna of Nigeria: fixed-nitrogen versus other rotation effects. Nutr Cycl Agroecosyst 84:129–139

    Article  CAS  Google Scholar 

  • Zengeni R, Giller KE (2007) Effectiveness of indigenous soybean rhizobial isolates to fix nitrogen under field conditions of Zimbabwe. Symbiosis 43:129–135

    CAS  Google Scholar 

  • Zhang H, Daoust F, Charles TC et al (2002) Bradyrhizobium japonicum mutants allowing improved nodulation and nitrogen fixation of field-grown soybean in a short season area. J Agric Sci 138:293–300

    Article  Google Scholar 

  • Zhang H, Prithiviraj B, Charles TC et al (2003) Low-temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabasawa, A.I. (2020). Prospects for Developing Effective and Competitive Native Strains of Rhizobium Inoculants in Nigeria. In: Abia, A., Lanza, G. (eds) Current Microbiological Research in Africa. Springer, Cham. https://doi.org/10.1007/978-3-030-35296-7_9

Download citation

Publish with us

Policies and ethics