Skip to main content

Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends

  • Chapter
  • First Online:
Internet of Things for Sustainable Community Development

Part of the book series: Internet of Things ((ITTCC))

Abstract

In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards sustainability IoT are discussed in detail. The sustainability IoT risk categorization, risk mitigation goals, and implementation aspects are analyzed. The openness paradox and data dichotomy between privacy and sharing is analyzed. Accordingly, the IoT technology and security standard developments activities are highlighted. The perspectives on opportunities and challenges in IoT for sustainability are given. Finally, the chapter concludes with a discussion of sustainability IoT cybersecurity case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham, C., Chatterjee, D., & Sims, R. R. (2019). Muddling through cybersecurity: Insights from the US healthcare industry. Business Horizons, 62, 539–548.

    Article  Google Scholar 

  2. Ahmed, E., Yaqoob, I., Gani, A., Imran, M., & Guizani, M. (2016). Internet-of-things-based smart environments: State of the art, taxonomy, and open research challenges. IEEE Wireless Communications, 23(5), 10–16.

    Article  Google Scholar 

  3. Akyildiz, I. F., & Stuntebeck, E. P. (2006). Wireless underground sensor networks: Research challenges. Ad Hoc Networks Journal, 4, 669–686.

    Google Scholar 

  4. Andrei, H., Andrei, P. C., Gaiceanu, M., Stanculescu, M., Arama, I. N., & Marinescu, I. (2019). Power systems recovery and restoration encounter with natural disaster and deliberate attacks. In Power Systems Resilience (pp. 247–267). Berlin: Springer.

    Chapter  Google Scholar 

  5. Ayad, A., Farag, H. E., Youssef, A., & El-Saadany, E. F. (2018). Detection of false data injection attacks in smart grids using recurrent neural networks. In 2018 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) (pp. 1–5). Piscataway: IEEE.

    Google Scholar 

  6. Barreto, L., & Amaral, A. (2018). Smart farming: Cyber security challenges. In 2018 International Conference on Intelligent Systems (IS) (pp. 870–876). Piscataway: IEEE.

    Chapter  Google Scholar 

  7. Bell, A. (2019). Applying human viewpoints to risk-based decision-making. In The Human Viewpoint for System Architectures (pp. 103–117). Berlin: Springer.

    Chapter  Google Scholar 

  8. Besbes, M., Chahed, J., & Hamdane, A. (2019). On the water security concept: State of the art. In National Water Security (pp. 31–55). Berlin: Springer.

    Chapter  Google Scholar 

  9. Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., & Vereecken, H. (2010). Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone Journal, 9(4), 1002–1013.

    Article  Google Scholar 

  10. Brass, I., Tanczer, L., Carr, M., Elsden, M., & Blackstock, J. (2018). Standardising a moving target: The development and evolution of IoT security standards. In Living in the internet of things: Cybersecurity of the IoT – 2018. London: IET.

    Google Scholar 

  11. Brewczyńska, M., Dunn, S., & Elijahu, A. (2019). Data privacy laws response to ransomware attacks: A multi-jurisdictional analysis. In Regulating New Technologies in Uncertain Times (pp. 281–305). Berlin: Springer.

    Chapter  Google Scholar 

  12. Burr, W. E. (2003). Selecting the advanced encryption standard. IEEE Security & Privacy, 1(2), 43–52.

    Article  Google Scholar 

  13. Cameron, C., Patsios, C., Taylor, P. C., & Pourmirza, Z. (2018). Using self-organizing architectures to mitigate the impacts of denial-of-service attacks on voltage control schemes. IEEE Transactions on Smart Grid, 10(3), 3010–3019.

    Article  Google Scholar 

  14. Care industry cybersecurity task force, H.: Report on improving cybersecurity in the health care industry. https://www.phe.gov/preparedness/planning/cybertf/documents/report2017.pdf.

  15. Cauteruccio, F., Fortino, G., Guerrieri, A., Liotta, A., Mocanu, D. C., Perra, C., et al. (2019). Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Information Fusion, 52, 13–30.

    Article  Google Scholar 

  16. Chatfield, A. T., & Reddick, C. G. (2019). A framework for internet of things-enabled smart government: A case of IoT cybersecurity policies and use cases in US federal government. Government Information Quarterly, 36(2), 346–357.

    Article  Google Scholar 

  17. Chi, H., Welch, S., Vasserman, E., & Kalaimannan, E. (2017). A framework of cybersecurity approaches in precision agriculture. In Proceedings of the ICMLG2017 5th International Conference on Management Leadership and Governance (pp. 90–95). Reading, UK: Acad. Conf. Publ. Int.

    Google Scholar 

  18. Childress, R. L., Hagi, S., & Turnham, J. C. (2018). Machine learning statistical methods estimating software system’s security analysis assessment or audit effort, cost and processing decisions. US Patent App. 10/095869.

    Google Scholar 

  19. Chisolm, E. I., & Matthews, J. C. (2012). Impact of hurricanes and flooding on buried infrastructure. Leadership and Management in Engineering, 12(3), 151–156.

    Article  Google Scholar 

  20. Coble, K. H., Mishra, A. K., Ferrell, S., & Griffin, T. (2018). Big data in agriculture: A challenge for the future. Applied Economic Perspectives and Policy, 40(1), 79–96.

    Article  Google Scholar 

  21. Cohen, S. A. (2019). Cybersecurity for critical infrastructure: Addressing threats and vulnerabilities in Canada (p. 3340). MSU Graduate Theses. https://bearworks.missouristate.edu/theses/3340.

  22. Coventry, L., & Branley, D. (2018). Cybersecurity in healthcare: A narrative review of trends, threats and ways forward. Maturitas, 113, 48–52.

    Article  Google Scholar 

  23. Davis, C. A. (2014). Water system service categories, post-earthquake interaction, and restoration strategies. Earthquake Spectra, 30(4), 1487–1509.

    Article  Google Scholar 

  24. Deng, R., Zhuang, P., & Liang, H. (2017). CCPA: Coordinated cyber-physical attacks and countermeasures in smart grid. IEEE Transactions on Smart Grid, 8(5), 2420–2430.

    Article  Google Scholar 

  25. DHS: Strategic principles for securing the Internet of Things (IoT). https://www.dhs.gov/sites/default/files/publications/Strategic_Principles_for_Securing_the_Internet_of_Things-2016-1115-FINAL.pdf.

  26. Dilling, L., Daly, M. E., Kenney, D. A., Klein, R., Miller, K., Ray, A. J., et al. (2019). Drought in urban water systems: Learning lessons for climate adaptive capacity. Climate Risk Management, 23, 32–42.

    Article  Google Scholar 

  27. Dong, X., Vuran, M. C., & Irmak, S. (2013). Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Networks, 11(7), 1975–1987. http://doi.org/10.1016/j.adhoc.2012.06.012.

    Article  Google Scholar 

  28. Duncan, S. E., Reinhard, R., Williams, R. C., Ramsey, A. F., Thomason, W., Lee, K., et al. (2019). Cyberbiosecurity: A new perspective on protecting us food and agricultural system. Frontiers in Bioengineering and Biotechnology, 7, 63.

    Article  Google Scholar 

  29. Fagan, M., Megas, K., Scarfone, K., & Smith, M. (2019). Core cybersecurity feature baseline for securable IoT devices: A starting point for IoT device manufacturers. Technical Report, National Institute of Standards and Technology.

    Google Scholar 

  30. Ferris, J. L. (2017). Data privacy and protection in the agriculture industry: Is federal regulation necessary. Minnesota Journal of Law, Science & Technology, 18, 309.

    Google Scholar 

  31. Foege, J. N., Lauritzen, G. D., Tietze, F., & Salge, T. O. (2019). Reconceptualizing the paradox of openness: How solvers navigate sharing-protecting tensions in crowdsourcing. Research Policy, 48(6), 1323–1339.

    Article  Google Scholar 

  32. Fredette, J., Marom, R., Steiner, K., & Witters, L. (2012). The promise and peril of hyperconnectivity for organizations and societies. The Global Information Technology Report 2012, 113–119.

    Google Scholar 

  33. Frustaci, M., Pace, P., Aloi, G., & Fortino, G. (2017). Evaluating critical security issues of the IoT world: Present and future challenges. IEEE Internet of Things Journal, 5(4), 2483–2495.

    Article  Google Scholar 

  34. Gervais, D. (2019). Exploring the interfaces between big data and intellectual property law. Journal of Intellectual Property, Information Technology and E-Commerce Law, 10, 3.

    Google Scholar 

  35. Ghafur, S., Grass, E., Jennings, N. A., & Darzi, A. (2019). The challenges of cybersecurity in health care: The UK national health service as a case study. The Lancet Digital Health, 1(1), e10–e12.

    Article  Google Scholar 

  36. Guo, H., & Sun, Z. (2014). Channel and energy modeling for self-contained wireless sensor networks in oil reservoirs. IEEE Transactions Wireless Communications, 13(4), 2258–2269. https://doi.org/10.1109/TWC.2013.031314.130835.

    Article  Google Scholar 

  37. Guo, Z., Shi, D., Johansson, K. H., & Shi, L. (2016). Optimal linear cyber-attack on remote state estimation. IEEE Transactions on Control of Network Systems, 4(1), 4–13.

    Article  MathSciNet  MATH  Google Scholar 

  38. Hindy, H., Brosset, D., Bayne, E., Seeam, A., & Bellekens, X. (2018). Improving SIEM for critical SCADA water infrastructures using machine learning. In Computer Security (pp. 3–19). Berlin: Springer.

    Google Scholar 

  39. Hussain, S., Meraj, M., Abughalwa, M., & Shikfa, A. (2018). Smart grid cybersecurity: Standards and technical countermeasures. In 2018 International Conference on Computer and Applications (ICCA)pp. 136–140. Piscataway: IEEE.

    Google Scholar 

  40. Jarmakiewicz, J., Parobczak, K., & Maślanka, K. (2017). Cybersecurity protection for power grid control infrastructures. International Journal of Critical Infrastructure Protection, 18, 20–33.

    Article  Google Scholar 

  41. Jha, N. K., Raghunathan, A., & Zhang, M. (2018). Securing medical devices through wireless monitoring and anomaly detection. US Patent App. 10/135849.

    Google Scholar 

  42. Kapellmann, D., & Washburn, R. (2019). Call to action: Mobilizing community discussion to improve information-sharing about vulnerabilities in industrial control systems and critical infrastructure. In 2019 11th International Conference on Cyber Conflict (CyCon) (Vol. 900, pp. 1–23). Piscataway: IEEE.

    Google Scholar 

  43. Katina, P. F., & Keating, C. B. (2018). Cyber-physical systems governance: A framework for (meta) cybersecurity design. In Security by Design (pp. 137–169). Berlin: Springer.

    Chapter  Google Scholar 

  44. Khan, M. A., & Salah, K. (2018). IoT security: Review, blockchain solutions, and open challenges. Future Generation Computer Systems, 82, 395–411.

    Article  Google Scholar 

  45. Khattak, A. M., Khanji, S. I., & Khan, W. A. (2019). Smart meter security: Vulnerabilities, threat impacts, and countermeasures. In International Conference on Ubiquitous Information Management and Communication (pp. 554–562). Berlin: Springer.

    Google Scholar 

  46. Kimani, K., Oduol, V., & Langat, K. (2019). Cyber security challenges for IoT-based smart grid networks. International Journal of Critical Infrastructure Protection, 25, 36–49.

    Article  Google Scholar 

  47. Kundzewicz, Z. W., Budhakooncharoen, S., Bronstert, A., Hoff, H., Lettenmaier, D., Menzel, L., et al. (2002). Coping with variability and change: Floods and droughts. In Natural Resources Forum (Vol. 26, pp. 263–274). Hoboken: Wiley Online Library.

    Article  Google Scholar 

  48. Lankoski, J., & Ollikainen, M. (2013). Innovations in nonpoint source pollution policy – European perspectives. Choices, 28(3), 1–5. Cited By 5.

    Google Scholar 

  49. Li, F., Li, H., Niu, B., & Chen, J. (2019). Privacy computing: Concept, computing framework, and future development trends. Engineering. https://doi.org/10.1016/j.eng.2019.09.002.

  50. Malik, M. I., Mcateer, I., Hannay, P., & Baig, Z. (2018). Preparing for secure wireless medical environment in 2050: A vision. IEEE Access, 6, 25666–25674.

    Article  Google Scholar 

  51. Manninen, O. (2018). Cybersecurity in agricultural communication networks : Case dairy farms. Master’s thesis, Jyväskylä: JAMK University of Applied Sciences. https://www.theseus.fi/handle/10024/159476

    Google Scholar 

  52. Markham, A., & Trigoni, N. (2012). Magneto-inductive networked rescue system (miners): Taking sensor networks underground. In Proceedings of the 11th ICPS, IPSN ’12 (pp. 317–328). New York: ACM. https://doi.org/10.1145/2185677.2185746.

    Google Scholar 

  53. McGettrick, A. (2013). Toward effective cybersecurity education. IEEE Security & Privacy, 11(6), 66–68.

    Article  Google Scholar 

  54. Mitton, N., Chaouchi, H., Noel, T., Gabillon, T., & Capolsini, P. (2016). Interoperability, safety and security in IoT. In Second International Conference, InterIoT 2016 and Third International Conference, SaSeIoT. Berlin: Springer.

    Google Scholar 

  55. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., & Irwin, D. (2010). Private memoirs of a smart meter. In Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building (pp. 61–66). New York: ACM.

    Chapter  Google Scholar 

  56. Moy de Vitry, M., Schneider, M. Y., Wani, O. F., Manny, L., Leitão, J. P., & Eggimann, S. (2019). Smart urban water systems: What could possibly go wrong? Environmental Research Letters, 14(8), 081001.

    Article  Google Scholar 

  57. Neiman, P. J., Schick, L. J., Ralph, F. M., Hughes, M., & Wick, G. A. (2011). Flooding in western Washington: The connection to atmospheric rivers. Journal of Hydrometeorology, 12(6), 1337–1358.

    Article  Google Scholar 

  58. Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., & Ghani, N. (2019). Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Communications Surveys & Tutorials, 21(3), 2702–2733.

    Article  Google Scholar 

  59. Peterson, T. C., Heim Jr, R. R., Hirsch, R., Kaiser, D. P., Brooks, H., Diffenbaugh, N. S., et al. (2013). Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bulletin of the American Meteorological Society, 94(6), 821–834.

    Article  Google Scholar 

  60. Pirbhulal, S., Samuel, O. W., Wu, W., Sangaiah, A. K., & Li, G. (2019). A joint resource-aware and medical data security framework for wearable healthcare systems. Future Generation Computer Systems, 95, 382–391.

    Article  Google Scholar 

  61. Prieger, J. E. (2003). The supply side of the digital divide: Is there equal availability in the broadband internet access market? Economic Inquiry, 41(2), 346–363.

    Article  Google Scholar 

  62. Radhakrishnan, V., Durairaj, D., Balasubramanian, K., & Kamatchi, K. (2019). Development of a novel security scheme using DNA biocryptography for smart meter data communication. In 2019 3rd International Conference on Computing and Communications Technologies (ICCCT) (pp. 237–244). Piscataway: IEEE.

    Chapter  Google Scholar 

  63. Ralph, F., Dettinger, M., White, A., Reynolds, D., Cayan, D., Schneider, T., et al. (2011). A vision of future observations for western US extreme precipitation events and flooding: Monitoring, prediction and climate. Report to the Western States Water Council, Idaho Falls.

    Google Scholar 

  64. Ramotsoela, D. T., Hancke, G. P., & Abu-Mahfouz, A. M. (2019). Attack detection in water distribution systems using machine learning. Human-centric Computing and Information Sciences, 9(1), 13.

    Article  Google Scholar 

  65. Rasekh, A., Hassanzadeh, A., Mulchandani, S., Modi, S., & Banks,M. K. (2016). Smart water networks and cyber security. Journal of Water Resources Planning and Management, 142(7), 1–2.

    Article  Google Scholar 

  66. Ravi, A. R., & Nair, R. R. (2019). Cybersecurity threats and solutions in the current e-healthcare environment: A situational analysis. Medico-Legal Update, 19(2), 141–144.

    Article  Google Scholar 

  67. Reidy, K. M. (2019). Strengthening the cybersecurity of the internet of things. Gaithersburg: NIST.

    Google Scholar 

  68. Romdhane, R. B., Hammami, H., Hamdi, M., & Kim, T. H. (2019). A novel approach for privacy-preserving data aggregation in smart grid. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) (pp. 1060–1066). Piscataway: IEEE.

    Chapter  Google Scholar 

  69. Rotz, S., Duncan, E., Small, M., Botschner, J., Dara, R., Mosby, I., et al. (2019). The politics of digital agricultural technologies: A preliminary review. Sociologia Ruralis, 59(2), 203–229.

    Article  Google Scholar 

  70. Saeed, N., Alouini, M. S., & Al-Naffouri, T. Y. (2019). 3d localization for internet of underground things in oil and gas reservoirs. IEEE Access, 7, 121769–121780.

    Google Scholar 

  71. Saeed, N., Alouini, M., & Al-Naffouri, T. Y. (Fourthquarter 2019). Toward the internet of underground things: A systematic survey. IEEE Communications Surveys and Tutorials, 21(4), 3443–3466. https://doi.org/10.1109/COMST.2019.2934365.

    Article  Google Scholar 

  72. Salam, A. (2018). Pulses in the sand: Long range and high data rate communication techniques for next generation wireless underground networks. Lincoln: ETD collection for University of Nebraska (AAI10826112). http://digitalcommons.unl.edu/dissertations/AAI10826112.

  73. Salam, A. (2019). A comparison of path loss variations in soil using planar and dipole antennas. In 2019 IEEE International Symposium on Antennas and Propagation. Piscataway: IEEE.

    Google Scholar 

  74. Salam, A. (2019). A path loss model for through the soil wireless communications in digital agriculture. In 2019 IEEE International Symposium on Antennas and Propagation. Piscataway: IEEE.

    Google Scholar 

  75. Salam, A. (2019). Subsurface MIMO: A beamforming design in internet of underground things for digital agriculture applications. Journal of Sensor and Actuator Networks, 8(3). https://doi.org/10.3390/jsan8030041.

    MathSciNet  Google Scholar 

  76. Salam, A. (2019). Underground environment aware MIMO design using transmit and receive beamforming in internet of underground things. In 2019 International Conference on Internet of Things (ICIOT 2019), San Diego.

    Google Scholar 

  77. Salam, A. (2019). An underground radio wave propagation prediction model for digital agriculture. Information, 10(4). https://doi.org/10.3390/info10040147.

    Google Scholar 

  78. Salam, A. (2019). Underground soil sensing using subsurface radio wave propagation. In 5th Global workshop on proximal soil sensing, Columbia.

    Google Scholar 

  79. Salam, A., & Karabiyik, U. (2019). A cooperative overlay approach at the physical layer of cognitive radio for digital agriculture. In Third International Balkan Conference on Communications and Networking 2019 (BalkanCom’19). Skopje, Macedonia, the former Yugoslav Republic of.

    Google Scholar 

  80. Salam, A., & Shah, S. (2019). Internet of things in smart agriculture: Enabling technologies. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (WF-IoT 2019), Limerick.

    Google Scholar 

  81. Salam, A., & Shah, S. (2019). Urban underground infrastructure monitoring IoT: The path loss analysis. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT) (WF-IoT 2019), Limerick.

    Google Scholar 

  82. Salam, A., & Vuran, M. C. (2017). Smart underground antenna arrays: A soil moisture adaptive beamforming approach. In Proceedings of IEEE INFOCOM 2017, Atlanta.

    Google Scholar 

  83. Salam, A., & Vuran, M. C. (2017). Wireless underground channel diversity reception with multiple antennas for internet of underground things. In Proceedings of IEEE ICC 2017, Paris.

    Google Scholar 

  84. Salam, A., & Vuran, M. C. (2018). EM-based wireless underground sensor networks. In S. Pamukcu, L. Cheng (Eds.) Underground Sensing (pp. 247–285). Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-803139-1.00005-9.

    Chapter  Google Scholar 

  85. Salam, A., Vuran, M. C., Dong, X., Argyropoulos, C., & Irmak, S. (2019). A theoretical model of underground dipole antennas for communications in internet of underground things. IEEE Transactions on Antennas and Propagation, 67(6), 3996–4009.

    Article  Google Scholar 

  86. Salam, A., Vuran, M. C., & Irmak, S. (2016). Pulses in the sand: Impulse response analysis of wireless underground channel. In Proceedings of INFOCOM 2016, San Francisco.

    Google Scholar 

  87. Salam, A., Vuran, M. C., & Irmak, S. (2019). Di-sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Computer Networks, 151, 31–41. https://doi.org/10.1016/j.comnet.2019.01.001.

    Google Scholar 

  88. Sales, N., Remédios, O., & Arsenio, A. (2015). Wireless sensor and actuator system for smart irrigation on the cloud. In 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT) (pp. 693–698). Piscataway: IEEE.

    Chapter  Google Scholar 

  89. Sengupta, A., Leesatapornwongsa, T., Ardekani, M. S., & Stuardo, C. A. (2019). Transactuations: Where transactions meet the physical world. In 2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19) (pp. 91–106).

    Google Scholar 

  90. Shridhar, V. (2019). The India of things: Tata communications’ countrywide IoT network aims to improve traffic, manufacturing, and health care. IEEE Spectrum, 56(2), 42–47.

    Article  Google Scholar 

  91. Spaulding, A. D., & Wolf, J. R. (2018). Cyber-security knowledge and training needs of beginning farmers in Illinois. In Proceeding 2018 agricultural and applied economics association annual meeting, Washington, D.C., August 5–August 7.

    Google Scholar 

  92. Stankovic, J. A., Le, T., Hendawi, A., & Tian, Y. (2019). Hardware/software security patches for internet of trillions of things. arXiv preprint arXiv:1903.05266.

    Google Scholar 

  93. Temel, S., Vuran, M. C., Lunar, M. M., Zhao, Z., Salam, A., Faller, R. K., et al. (2018). Vehicle-to-barrier communication during real-world vehicle crash tests. Computer Communications, 127, 172–186. https://doi.org/10.1016/j.comcom.2018.05.009.

    Article  Google Scholar 

  94. Temple, W. G., Chen, B., & Tippenhauer, N. O. (2013). Delay makes a difference: Smart grid resilience under remote meter disconnect attack. In 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm) (pp. 462–467). Piscataway: IEEE.

    Chapter  Google Scholar 

  95. Tian, Y., Zhang, N., Lin, Y. H., Wang, X., Ur, B., Guo, X., et al. (2017). SmartAuth: User-centered authorization for the internet of things. In 26th {USENIX} Security Symposium ({USENIX} Security 17) (pp. 361–378).

    Google Scholar 

  96. Tiusanen, M. J. (2013). Soil scouts: Description and performance of single hop wireless underground sensor nodes. Ad Hoc Networks, 11(5), 1610–1618. http://dx.doi.org/10.1016/j.adhoc.2013.02.002.

    Google Scholar 

  97. Tweneboah-Koduah, S., Tsetse, A. K., Azasoo, J., & Endicott-Popovsky, B. (2018). Evaluation of cybersecurity threats on smart metering system. In Information Technology-New Generations (pp. 199–207). Berlin: Springer.

    Chapter  Google Scholar 

  98. Upgradability, N.I.S., Patching: Catalog of existing IoT security standards (2017). https://www.ntia.doc.gov/files/ntia/publications/iotsecuritystandardscatalog_draft_09.12.17.pdf.

    Google Scholar 

  99. USGCRP. (2016). Impacts of climate change on human health in the United States: A scientific assessment. http://dx.doi.org/10.7930/J0R49NQX.

    Google Scholar 

  100. Vano, J. A., Miller, K., Dettinger, M. D., Cifelli, R., Curtis, D., Dufour, A., et al. (2019). Hydroclimatic extremes as challenges for the water management community: Lessons from Oroville dam and Hurricane Harvey. Bulletin of the American Meteorological Society, 100(1), S9–S14.

    Article  Google Scholar 

  101. Vuran, M. C., Salam, A., Wong, R., & Irmak, S. (2018). Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Networks. https://doi.org/10.1016/j.adhoc.2018.07.017.

    Article  Google Scholar 

  102. Wang, Z., Ma, P., Chi, Y., & Zhang, J. (2018). Medical devices are at risk: Information security on diagnostic imaging system. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (pp. 2309–2311). New York: ACM.

    Google Scholar 

  103. West, J. (2018). A prediction model framework for cyber-attacks to precision agriculture technologies. Journal of Agricultural & Food Information, 19(4), 307–330.

    Article  Google Scholar 

  104. Window, M. (2019). Security in precision agriculture: Vulnerabilities and risks of agricultural systems. Luleå: Luleå University of Technology. Masters’ thesis. http://ltu.diva-portal.org/smash/get/diva2:1322203/FULLTEXT02.pdf.

    Google Scholar 

  105. Wiseman, L., Sanderson, J., Zhang, A., Jakku, E. (2019). Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming, NJAS—Wageningen Journal of Life Sciences, 90–91, 100301. ISSN 1573-5214. https://doi.org/10.1016/j.njas.2019.04.007.

    Article  Google Scholar 

  106. Wobus, C., Lawson, M., Jones, R., Smith, J., & Martinich, J. (2014). Estimating monetary damages from flooding in the United States under a changing climate. Journal of Flood Risk Management, 7(3), 217–229.

    Article  Google Scholar 

  107. Zanghi, E., Do Coutto Filho, M. B., & Stacchini de Souza, J. C. (2019). Conceptual framework for blockchain-based metering systems. Multiagent and Grid Systems, 15(1), 77–97.

    Article  Google Scholar 

  108. Zhang, Y., Gravina, R., Lu, H., Villari, M., & Fortino, G. (2018). Pea: Parallel electrocardiogram-based authentication for smart healthcare systems. Journal of Network and Computer Applications, 117, 10–16.

    Article  Google Scholar 

  109. Zhang, Y., Wang, J., & Liu, J. Attack identification and correction for PMU GPS spoofing in unbalanced distribution systems. In IEEE transactions on smart grid. https://doi.org/10.1109/TSG.2019.2937554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A. (2020). Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends. In: Internet of Things for Sustainable Community Development. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-35291-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35291-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35290-5

  • Online ISBN: 978-3-030-35291-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics