Skip to main content

Bayesian Optimization with Discrete Variables

  • Conference paper
  • First Online:
AI 2019: Advances in Artificial Intelligence (AI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11919))

Included in the following conference series:

Abstract

Bayesian Optimization (BO) is an efficient method to optimize an expensive black-box function with continuous variables. However, in many cases, the function has only discrete variables as inputs, which cannot be optimized by traditional BO methods. A typical approach to optimize such functions assumes the objective function is on a continuous domain, then applies a normal BO method with a rounding of suggested continuous points to nearest discrete points at the end. This may cause BO to get stuck and repeat pre-existing observations. To overcome this problem, we propose a method (named Discrete-BO) that manipulates the exploration of an acquisition function and the length scale of a covariance function, which are two key components of a BO method, to prevent sampling a pre-existing observation. Our experiments on both synthetic and real-world applications show that the proposed method outperforms state-of-the-art baselines in terms of convergence rate. More importantly, we also show some theoretical analyses to prove the correctness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergstra, J., Yamins, D., Cox, D.D.: Hyperopt: a python library for optimizing the hyperparameters of machine learning algorithms. In: Proceedings of the 12th Python in Science Conference, pp. 13–20. Citeseer (2013)

    Google Scholar 

  2. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems, pp. 2546–2554 (2011)

    Google Scholar 

  3. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

  4. Garrido-Merchán, E.C., Hernández-Lobato, D.: Dealing with categorical and integer-valued variables in Bayesian optimization with Gaussian processes. arXiv preprint arXiv:1805.03463 (2018)

  5. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  6. Jalali, A., Azimi, J., Fern, X., Zhang, R.: A lipschitz exploration-exploitation scheme for Bayesian optimization. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8188, pp. 210–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40988-2_14

    Chapter  Google Scholar 

  7. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

  8. Kushner, H.J.: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Basic Eng. 86(1), 97–106 (1964)

    Article  Google Scholar 

  9. Lakshminarayanan, B., Roy, D.M., Teh, Y.W.: Mondrian forests for large-scale regression when uncertainty matters. In: Artificial Intelligence and Statistics, pp. 1478–1487 (2016)

    Google Scholar 

  10. Lizotte, D.J.: Practical Bayesian optimization. University of Alberta (2008)

    Google Scholar 

  11. Mockus, J.: Application of Bayesian approach to numerical methods of global and stochastic optimization. J. Glob. Optim. 4(4), 347–365 (1994)

    Article  MathSciNet  Google Scholar 

  12. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for seeking the extremum. Towards Glob. Optim. 2(117–129), 2 (1978)

    MATH  Google Scholar 

  13. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML 2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  14. Reyes-Ortiz, J.L., Anguita, D., Ghio, A., Parra, X.: Human activity recognition using smartphones data set. UCI Machine Learning Repository; University of California, Irvine, School of Information and Computer Sciences: Irvine, CA, USA (2012)

    Google Scholar 

  15. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016)

    Article  Google Scholar 

  16. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inform. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  17. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22(3), 418–435 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the Australian Government through the Australian Research Council (ARC). Prof Venkatesh is the recipient of an ARC Australian Laureate Fellowship (FL170100006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phuc Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luong, P., Gupta, S., Nguyen, D., Rana, S., Venkatesh, S. (2019). Bayesian Optimization with Discrete Variables. In: Liu, J., Bailey, J. (eds) AI 2019: Advances in Artificial Intelligence. AI 2019. Lecture Notes in Computer Science(), vol 11919. Springer, Cham. https://doi.org/10.1007/978-3-030-35288-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35288-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35287-5

  • Online ISBN: 978-3-030-35288-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics