Gene/Environment Interaction and Autoimmune Disease



Autoimmune diseases are complex illnesses in which the body’s immune system attacks its own healthy tissues. These diseases, which can be fatal, gravely impact the quality of life of those afflicted by them with no cure currently available. The exact etiology of autoimmune diseases is not completely clear. Biomedical research has revealed that both genetic and environmental factors contribute to the development and progression of these diseases. Nevertheless, genetic and environmental factors alone cannot explain a large proportion of cases, leading to the possibility that the two factors interact in driving disease onset. Understanding how genetic and environmental factor influence host physiology in a manner that leads to the development of autoimmune diseases can reveal the mechanisms by which these diseases manifest, and bring us closer to finding a cure for them. In this chapter, we will review the current research of genetic/environmental interactions that contribute to development of autoimmune diseases, with an emphasis on interactions between the host and the multitudes of microbes that inhabit it, the microbiota.


Autoimmune disease Inflammatory bowel diseases Crohn’s disease Ulcerative colitis Microbiome Microbiota Environmental factors Psoriasis Rheumatoid arthritis Gene/environment interaction Cigarette smoking 


  1. 1.
    Davidson A, Diamond B. Autoimmune Diseases. N Engl J Med. 2001;345:340–50.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Parks CG, et al. Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci. 2014;15:14269–97.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wahren-Herlenius M, Kuchroo VK. Gene-environment interaction in induction of autoimmunity. Semin Immunol. 2011;23:65–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Genetic factors shared among diverse autoimmune disorders. 2010.Google Scholar
  5. 5.
    Cotsapas C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011;7:e1002254.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Shamriz O, et al. Microbiota at the crossroads of autoimmunity. Autoimmun Rev. 2016;15:859–69. Scholar
  7. 7.
    Ma Q, et al. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16:53.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Fattorusso A, Di Genova L, Dell’Isola G, Mencaroni E, Esposito S. Autism Spectrum disorders and the gut microbiota. Nutrients. 2019;11:521.PubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cuomo A, et al. The microbiome: a new target for research and treatment of schizophrenia and its resistant presentations? A systematic literature search and review. Front Pharmacol. 2018;9:1040.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Rothschild D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555:210–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Ng SC, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78.PubMedCrossRefGoogle Scholar
  12. 12.
    Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wen Z, Fiocchi C. Inflammatory bowel disease: autoimmune or immune-mediated pathogenesis? Clin Dev Immunol. 2004;11:195–204.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Inflammatory Bowel Disease. The classic gastrointestinal autoimmune disease. Curr Probl Pediatr Adolesc Health Care. 2014;44:328–34.CrossRefGoogle Scholar
  15. 15.
    Mirkov MU, Verstockt B, Cleynen I. Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol Hepatol. 2017;2:224–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Carr I, Mayberry JF. The effects of migration on ulcerative colitis: a three-year prospective study among Europeans and first- and second-generation south Asians in Leicester (1991-1994). Am J Gastroenterol. 1999;94:2918–22. Scholar
  17. 17.
    Pinsk V, et al. Inflammatory bowel disease in the south Asian pediatric population of British Columbia. Am J Gastroenterol. 2007;102:1077–83. Scholar
  18. 18.
    Tsironi E, Feakins RM, Roberts CSJ, Rampton DS. Incidence of inflammatory bowel disease is rising and abdominal tuberculosis is falling in Bangladeshis in East London, United Kingdom. Am J Gastroenterol. 2004;99:1749–55. Scholar
  19. 19.
    Molodecky NA, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46–54.e42. Scholar
  20. 20.
    Parkes GC, Whelan K, Lindsay JO. Smoking in inflammatory bowel disease: impact on disease course and insights into the aetiology of its effect. J Crohn’s Colitis. 2014;8:717–25. Scholar
  21. 21.
    Ananthakrishnan AN, Nguyen DD, Sauk J, Yajnik V, Xavier RJ. Genetic polymorphisms in metabolizing enzymes modifying the association between smoking and inflammatory bowel diseases. Inflamm Bowel Dis. 2014;20:783–9. Scholar
  22. 22.
    Wang M-H, et al. Gene-gene and gene-environment interactions in ulcerative colitis. Hum Genet. 2014;133:547–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Doecke JD, et al. Smoking behaviour modifies IL23r -associated disease risk in patients with Crohn’s disease. J Gastroenterol Hepatol. 2015;30:299–307.PubMedCrossRefGoogle Scholar
  24. 24.
    Yadav P, et al. Genetic Factors Interact With Tobacco Smoke to Modify Risk for Inflammatory Bowel Disease in Humans and Mice. 2017; Scholar
  25. 25.
    Liu T-C, Head RD, Stappenbeck TS. Interaction between smoking and ATG16L1 T300A triggers Paneth cell defects in Crohn’s disease the journal of clinical investigation. J Clin Invest. 2018;128:5110–22.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the microbiome. Immunity. 2014;40:843–54. Scholar
  27. 27.
    Litvak Y, Byndloss MX, Bäumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362(80):eaat9076.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Basso PJ, Câmara NOS, Sales-Campos H. Microbial-based therapies in the treatment of inflammatory bowel disease – an overview of human studies. Front Pharmacol. 2019;9(1571)Google Scholar
  29. 29.
    Bel S, et al. Reprogrammed and transmissible intestinal microbiota confer diminished susceptibility to induced colitis in TMF −/− mice. Proc Natl Acad Sci 1. 2014;6:4964–9. Scholar
  30. 30.
    Youngster I, et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA - J Am Med Assoc. 2014;312:1772–8. Scholar
  31. 31.
    Ananthakrishnan AN, et al. Environmental triggers in IBD: a review of progress and evidence. Nat Rev Gastroenterol Hepatol. 2017;15:39–49.PubMedCrossRefGoogle Scholar
  32. 32.
    Aschard H, et al. Genetic effects on the commensal microbiota in inflammatory bowel disease patients. PLoS Genet. 2019;15:e1008018.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    De Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nature Reviews Gastroenterology and Hepatology. 2017;14:739–49. Scholar
  34. 34.
    Lavoie S, et al. The Crohn’s disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019:8.Google Scholar
  35. 35.
    Ramanan D, Tang MS, Bowcutt R, Loke P, Cadwell K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity. 2014;41:311–24.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Elinav E, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145:745–57. Scholar
  37. 37.
    Garrett WS, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33–45. Scholar
  38. 38.
    Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med. 2015;21:233–44. Scholar
  39. 39.
    Darfeuille-Michaud A, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–21. Scholar
  40. 40.
    Barnich N, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Invest. 2007;117:1566–74. Scholar
  41. 41.
    Baumgart M, et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007;1:403–18. Scholar
  42. 42.
    Lapaquette P, Glasser AL, Huett A, Xavier RJ, Darfeuille-Michaud A. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell Microbiol. 2010;12:99–113. Scholar
  43. 43.
    Chassaing B, et al. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest. 2011;121:966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wong S-Y, Cadwell K. There was collusion: microbes in inflammatory bowel disease. PLoS Pathog. 2018;14:e1007215.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Bel S, Hooper LV. Secretory autophagy of lysozyme in Paneth cells. Autophagy. 2018;14:719–21.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bel S, et al. Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science. 2017;357(80):eaal4677.Google Scholar
  47. 47.
    Cadwell K, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141:1135–45.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Boehncke W-H, Schön MP. Psoriasis. Lancet. 2015;386:983–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Balato N, et al. Effect of weather and environmental factors on the clinical course of psoriasis. Occup Env Med. 2013;70:600.CrossRefGoogle Scholar
  50. 50.
    Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361:496–509.PubMedCrossRefGoogle Scholar
  51. 51.
    Christophers E. Psoriasis--epidemiology and clinical spectrum. Clin Exp Dermatol. 2001;26:314–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Parisi R, et al. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Invest Dermatol. 2013;133:377–85.PubMedCrossRefGoogle Scholar
  53. 53.
    Ogdie A, Weiss P. The epidemiology of psoriatic arthritis. Rheum Dis Clin. 2015;41:545–68.CrossRefGoogle Scholar
  54. 54.
    Oliveira Mde F, Rocha Bde O, Duarte GV. Psoriasis: classical and emerging comorbidities. An Bras Dermatol. 2015;90:9–20.PubMedCrossRefGoogle Scholar
  55. 55.
    Gulliver W. Long-term prognosis in patients with psoriasis. Br J Dermatol. 2008;159(Suppl):2–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Binus AM, et al. Associated comorbidities in psoriasis and inflammatory bowel disease. J Eur Acad Dermatol Venereol. 2012;26:644–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Mehta NN, et al. Patients with severe psoriasis are at increased risk of cardiovascular mortality: cohort study using the general practice research database. Eur Heart J. 2010;31:1000–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Gelfand JM, et al. The risk of mortality in patients with psoriasis: results from a population-based study. Arch Dermatol. 2007;143:1493–9.PubMedGoogle Scholar
  59. 59.
    Ogdie A, et al. Risk of mortality in patients with psoriatic arthritis, rheumatoid arthritis and psoriasis: a longitudinal cohort study. Ann Rheum Dis. 2014;73:149–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Ayala-Fontanez N, Soler DC, McCormick TS. Current knowledge on psoriasis and autoimmune diseases. Psoriasis (Auckl). 2016;6:7–32.Google Scholar
  61. 61.
    Langley RG, et al. Secukinumab in plaque psoriasis--results of two phase 3 trials. N Engl J Med. 2014;371:326–38.PubMedCrossRefGoogle Scholar
  62. 62.
    Krueger GG, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med. 2007;356:580–92.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Leonardi CL, et al. Etanercept as monotherapy in patients with psoriasis. N Engl J Med. 2003;349:2014–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Bowcock AM, Krueger JG. Getting under the skin: the immunogenetics of psoriasis. Nat Rev Immunol. 2005;5:699–711.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Genetic Analysis of Psoriasis, C, et al. A genome-wide association study identifies new psoriasis susceptibility loci and an interaction between HLA-C and ERAP1. Nat Genet. 2010;42:985–90.CrossRefGoogle Scholar
  66. 66.
    Trembath, R. C. et al. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 1997;6:813–820.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhang XJ, et al. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet. 2009;41:205–10.PubMedCrossRefGoogle Scholar
  68. 68.
    Nair RP, et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am J Hum Genet. 2006;78:827–51.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tiilikainen A, Lassus A, Karvonen J, Vartiainen P, Julin M. Psoriasis and HLA-Cw6. Br J Dermatol. 1980;102:179–84.PubMedCrossRefGoogle Scholar
  70. 70.
    Tsoi LC, et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44:1341–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Gupta R, Debbaneh MG, Liao W. Genetic epidemiology of psoriasis. Curr Dermatol Rep. 2014;3:61–78.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Naldi L. Psoriasis and smoking: links and risks. Psoriasis. Auckland, NZ. 2016;6:65–71.Google Scholar
  73. 73.
    Naldi L, et al. Cigarette smoking, body mass index, and stressful life events as risk factors for psoriasis: results from an Italian case-control study. J Invest Dermatol. 2005;125:61–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Jin Y, et al. Combined effects of HLA-Cw6 and cigarette smoking in psoriasis vulgaris: a hospital-based case-control study in China. J Eur Acad Dermatol Venereol. 2009;23:132–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Yin XY, et al. TNIP1/ANXA6 and CSMD1 variants interacting with cigarette smoking, alcohol intake affect risk of psoriasis. J Dermatol Sci. 2013;70:94–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Whyte HJ, Baughman RD. Acute GUTTATE psoriasis and streptococcal infection. Arch Dermatol. 1964;89:350–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Telfer NR, Chalmers RJ, Whale K, Colman G. The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol. 1992;128:39–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Gudjonsson JE, Thorarinsson AM, Sigurgeirsson B, Kristinsson KG, Valdimarsson H. Streptococcal throat infections and exacerbation of chronic plaque psoriasis: a prospective study. Br J Dermatol. 2003;149:530–4.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sigurdardottir SL, Thorleifsdottir RH, Valdimarsson H, Johnston A. The association of sore throat and psoriasis might be explained by histologically distinctive tonsils and increased expression of skin-homing molecules by tonsil T cells. Clin Exp Immunol. 2013;174:139–51.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Thorleifsdottir RH, et al. Improvement of psoriasis after tonsillectomy is associated with a decrease in the frequency of circulating T cells that recognize streptococcal determinants and homologous skin determinants. J Immunol. 2012;188:5160–5.PubMedCrossRefGoogle Scholar
  81. 81.
    Valdimarsson H, Thorleifsdottir RH, Sigurdardottir SL, Gudjonsson JE, Johnston A. Psoriasis – as an autoimmune disease caused by molecular mimicry. Trends Immunol. 2009;30:494–501.PubMedCrossRefGoogle Scholar
  82. 82.
    Salem I, Ramser A, Isham N, Ghannoum MA. The gut microbiome as a major regulator of the gut-skin Axis. Front Microbiol. 2018;9(1459)Google Scholar
  83. 83.
    Sokol H, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci. 2008;105:16731–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Eppinga H, et al. Similar depletion of protective Faecalibacterium prausnitzii in psoriasis and inflammatory bowel disease, but not in hidradenitis Suppurativa. J Crohns Colitis. 2016;10:1067–75.PubMedCrossRefGoogle Scholar
  85. 85.
    Scher JU, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67:128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Codoñer FM, et al. Gut microbial composition in patients with psoriasis. Sci Rep. 2018;8:3812.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zakostelska Z, et al. Intestinal microbiota promotes psoriasis-like skin inflammation by enhancing Th17 response. PLoS One. 2016;11:e0159539.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Oh J, et al. Temporal stability of the human skin microbiome. Cell. 2016;165:854–66.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Grice EA, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(80):1190–2.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Findley K, Grice EA. The skin microbiome: a focus on pathogens and their association with skin disease. PLoS Pathog. 2014;10:e1004436.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Grice EA. The skin microbiome: potential for novel diagnostic and therapeutic approaches to cutaneous disease. Semin Cutan Med Surg. 2014;33:98–103.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chang HW, et al. Alteration of the cutaneous microbiome in psoriasis and potential role in Th17 polarization. Microbiome. 2018;6:154.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gao Z, Tseng CH, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One. 2008;3:e2719.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Fahlén A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch Dermatol Res. 2012;304:15–22.PubMedCrossRefGoogle Scholar
  95. 95.
    Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res. 2002;4(Suppl 3):S265–72.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.PubMedCrossRefGoogle Scholar
  97. 97.
    van Vollenhoven RF. Sex differences in rheumatoid arthritis: more than meets the eye. BMC Med. 2009;7:12.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30:1205–13.PubMedCrossRefGoogle Scholar
  99. 99.
    Weyand CM, Goronzy JJ. Disease-associated human histocompatibility leukocyte antigen determinants in patients with seropositive rheumatoid arthritis. Functional role in antigen-specific and allogeneic T cell recognition. J Clin Invest. 1990;85:1051–7.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    De Almeida DE, et al. Immune dysregulation by the rheumatoid arthritis shared epitope. J Immunol. 2010;185:1927–34.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Remmers EF, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357:977–86.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Plenge RM, et al. Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet. 2007;39:1477–82.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Kurreeman FAS, et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med. 2007;4:e278.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Begovich AB, et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75:330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    MacGregor AJ, et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 2000;43:30–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Padyukov L, Silva C, Stolt P, Alfredsson L, Klareskog L. A gene-environment interaction between smoking and shared epitope genes in HLA-DR provides a high risk of seropositive rheumatoid arthritis. Arthritis Rheum. 2004;50:3085–92.PubMedCrossRefGoogle Scholar
  107. 107.
    Makrygiannakis D, et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann Rheum Dis. 2008;67:1488–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Ellis JA, Kemp AS, Ponsonby A-L. Gene–environment interaction in autoimmune disease. Expert Rev Mol Med. 2014;16:e4.PubMedCrossRefGoogle Scholar
  109. 109.
    MANSSON I, COLLDAHL H. The intestinal FLORA in patients with bronchial asthma and rheumatoid arthritis. Allergy. 1965;20:94–104.CrossRefGoogle Scholar
  110. 110.
    Kohashi O, Kohashi Y, Takahashi T, Ozawa A, Shigematsu N. Reverse effect of gram-positive bacteria vs. gram-negative bacteria on adjuvant-induced arthritis in germfree rats. Microbiol Immunol. 1985;29:487–97.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kohashi O, Kohashi Y, Takahashi T, Ozawa A, Shigematsu N. Suppressive effect of Escherichia coli on adjuvant-induced arthritis in germ-free rats. Arthritis Rheum. 1986;29:547–53.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Kohashi O, et al. Susceptibility to adjuvant-induced arthritis among germfree, specific-pathogen-free, and conventional rats. Infect Immun. 1979;26:791–4.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Rath HC, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest. 1996;98:945–53.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wu H-J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Abdollahi-Roodsaz S, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. 2008;118:205–16.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Vaahtovuo J, Munukka E, Korkeamäki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol. 2008;35:1500–5.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Scher JU, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. elife. 2013;2:e01202.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zhang X, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21:895–905.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Liu X, Zou Q, Zeng B, Fang Y, Wei H. Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr Microbiol. 2013;67:170–6.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Kozireva SV, et al. Incidence and clinical significance of parvovirus B19 infection in patients with rheumatoid arthritis. J Rheumatol. 2008;35:1265–70.PubMedGoogle Scholar
  121. 121.
    Chen Y-S, et al. Parvovirus B19 infection in patients with rheumatoid arthritis in Taiwan. J Rheumatol. 2006;33:887–91.PubMedGoogle Scholar
  122. 122.
    Meron MK, et al. Infectious aspects and the Etiopathogenesis of rheumatoid arthritis. Clin Rev Allergy Immunol. 2010;38:287–91.PubMedCrossRefGoogle Scholar
  123. 123.
    Catrina AI, Deane KD, Scher JUG. Environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology (Oxford). 2016;55:391–402.Google Scholar
  124. 124.
    Scher JU, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 2012;64:3083–94.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Mikuls TR, et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthritis Rheumatol. 2014;66:1090–100.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wegner N, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 2010;62:2662–72.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Valesini G, et al. Citrullination and autoimmunity. Autoimmun Rev. 2015;14:490–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Lerner A, Aminov R, Matthias T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front Microbiol. 2016;7:84.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of DermatologyThe University of Texas Southwestern Medical CenterDallasUSA
  2. 2.Azrieli Faculty of MedicineBar-Ilan UniversitySafedIsrael

Personalised recommendations