Advertisement

Small Non-Coding RNAs and Epigenetic Inheritance

Chapter
  • 412 Downloads

Abstract

Non-coding RNAs have recently been revealed to be intergenerational carriers of epigenetic information. Particularly the studies on the paternal epigenetic inheritance of acquired traits, metabolic disorders and psychiatric conditions, have convincingly demonstrated the involvement of sperm RNA molecules in the process. Spermatozoa contain a complex mixture of RNAs of which especially small non-coding RNAs, such as microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and tRNA-derived fragments (tRFs), have been shown to respond to environmental signals, exposures to toxicants, changes in diet or even early life trauma. Furthermore, recent animal studies where spermatozoal small RNAs have been injected into zygotes demostrate the capacity of RNA to transmit information about acquired conditions to offspring. Altogether, these studies highlight the central role of RNA-mediated epigenetic inheritance in the etiology of many complex diseases and therefore public health.

Keywords

Non-coding RNAs PiRNA MiRNA TRNA TRFs Spermatogenesis Spermatozoa Sperm RNAs Testis Epididymis Epigenetic inheritance. 

Notes

Acknowledgements

We thank all Kotaja lab members for stimulating discussions. The research in the lab is supported by the Academy of Finland and Sigrid Jusélius Foundation. T.L. is funded by the Turku Doctoral Program in Molecular Medicine.

References

  1. 1.
    Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev. 2009;30:438–64.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Anderson P, Ivanov P. tRNA fragments in human health and disease. FEBS Lett. 2014;588:4297–304.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Aravin AAA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KFKF, Bestor T, Hannon GJGJ. A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell. 2008;31:785–99.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bao J, Wu J, Schuster AS, Hennig GW, Yan W. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol Reprod. 2013;89:107.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Belleannée C, Calvo E, Thimon V, Cyr DG, Légaré C, Garneau L, Sullivan R. Role of microRNAs in controlling gene expression in different segments of the human epididymis. PLoS One. 2012;7:e34996.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ben Maamar M, Sadler-Riggleman I, Beck D, McBirney M, Nilsson E, Klukovich R, Xie Y, Tang C, Yan W, Skinner MK. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ. Epigenetics. 2018;4:dvy010.CrossRefGoogle Scholar
  8. 8.
    Björkgren I, Saastamoinen L, Krutskikh A, Huhtaniemi I, Poutanen M, Sipilä P. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One. 2012;7:e38457.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Björkgren I, Gylling H, Turunen H, Huhtaniemi I, Strauss L, Poutanen M, Sipilä P. Imbalanced lipid homeostasis in the conditional Dicer1 knockout mouse epididymis causes instability of the sperm membrane. FASEB J. 2015;29:433–42.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Brieño-Enríquez MA, García-López J, Cárdenas DB, Guibert S, Cleroux E, Děd L, de Hourcade JD, Pěknicová J, Weber M, del Mazo J. Exposure to endocrine disruptor induces transgenerational epigenetic deregulation of MicroRNAs in primordial germ cells. PLoS One. 2015;10:e0124296.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Carmell MA, Girard A, van de Kant HJG, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell. 2007;12:503–14.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–96.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chalmel F, Rolland AD. Linking transcriptomics and proteomics in spermatogenesis. Reproduction. 2015;150:R149–57.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jegou B, et al. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci U S A. 2007;104:8346–51.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A. A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol. 2018;6:50.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng G, Peng H, Zhang X, Zhang Y, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016a;351:397–400.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016b;17:733–43.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Conine CC, Sun F, Song L, Rivera-Pérez JA, Rando OJ. Small RNAs gained during Epididymal transit of sperm are essential for embryonic development in mice. Dev. Cell. 2018;46:470–80.. e3PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cornwall GA. New insights into epididymal biology and function. Hum Reprod Update. 2009;15:213–27.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cortés-López M, Miura P. Emerging functions of circular RNAs. Yale J Biol Med. 2016;89:527–37.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Czech B, Hannon GJ. One loop to rule them all: the ping-pong cycle and piRNA-guided silencing. Trends Biochem Sci. 2016;41:324–37.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    de Castro Barbosa T, Ingerslev LR, Alm PS, Versteyhe S, Massart J, Rasmussen M, Donkin I, Sjögren R, Mudry JM, Vetterli L, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5:184–97.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O’Carroll D. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature. 2011;480:259–63.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    de Rooij DG. The nature and dynamics of spermatogonial stem cells. Development. 2017;144:3022–30.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Deng W, Lin H. Miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell. 2002;2:819–30.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Denham J, O’Brien BJ, Harvey JT, Charchar FJ. Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans. Epigenomics. 2015;7:717–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Dietz DM, LaPlant Q, Watts EL, Hodes GE, Russo SJ, Feng J, Oosting RS, Vialou V, Nestler EJ. Paternal transmission of stress-induced pathologies. Biol Psychiatry. 2011;70:408–14.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Donkin I, Barrès R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018;14:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EVR, Jørgensen N, Kristiansen VB, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23:369–78.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Firlit CF, Davis JR. Morphogenesis of the residual body of the mouse testis. J Cell Sci. 1965:s3–106.Google Scholar
  32. 32.
    Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gapp K, Bohacek J. Epigenetic germline inheritance in mammals: looking to the past to understand the future. Genes, Brain Behav. 2018;17:e12407.CrossRefGoogle Scholar
  34. 34.
    Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 2010;277:599–604.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ge Z-J, Liang X-W, Guo L, Liang Q-X, Luo S-M, Wang Y-P, Wei Y-C, Han Z-M, Schatten H, Sun Q-Y. Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine Oocytes1. Biol Reprod. 2013a;88:117.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ge Z-J, Luo S-M, Lin F, Liang Q-X, Huang L, Wei Y-C, Hou Y, Han Z-M, Schatten H, Sun Q-Y. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet–induced obesity. Environ Health Perspect. 2013b;122:159–64.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ghildiyal M, Zamore PD. Small silencing RNAs: an expanding universe. Nat Rev Genet. 2009;10:94–108.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Girard A, Sachidanandam R, Hannon GJ, Carmell MA. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature. 2006;442:199–202.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Gòdia M, Swanson G, Krawetz SA. A history of why fathers’ RNA matters†. Biol Reprod. 2018;99:147–59.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Goh WSSWSS, Falciatori I, Tam OHOH, Burgess R, Meikar O, Kotaja N, Hammell M, Hannon GJGJ. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis. Genes Dev. 2015;29:1032–44.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Gou L-T, Dai P, Yang J-H, Xue Y, Hu Y-P, Zhou Y, Kang J-Y, Wang X, Li H, Hua M-M, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis. Cell Res. 2015;25:266.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Grandjean V, Fourré S, De Abreu DAF, Derieppe M-A, Remy J-J, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep. 2015;5:18193.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hackett JA, Zylicz JJ, Surani MA. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 2012;28:164–74.PubMedCrossRefGoogle Scholar
  45. 45.
    Hess RA, Renato de Franca L. Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol. 2008;636:1–15.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Hilscher B, Hilscher W, Bülthoff-Ohnolz B, Krämer U, Birke A, Pelzer H, Gauss G. Kinetics of gametogenesis. I Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res. 1974;154:443–70.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hirakata S, Siomi MC. piRNA biogenesis in the germline: from transcription of piRNA genomic sources to piRNA maturation. Biochim Biophys Acta - Gene Regul. Mech. 2016;1859:82–92.CrossRefGoogle Scholar
  48. 48.
    Holoch D, Moazed D. RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 2015;16:71–84.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hou Y-J, Zhu C-C, Duan X, Liu H-L, Wang Q, Sun S-C. Both diet and gene mutation induced obesity affect oocyte quality in mice. Sci Rep. 2016;6:18858.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, de Angelis MH, Beckers J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48:497–9.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Idler RK, Yan W. Control of messenger RNA fate by RNA-binding proteins: an emphasis on mammalian spermatogenesis. J Androl. 2012;33:309–37.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Ingerslev LR, Donkin I, Fabre O, Versteyhe S, Mechta M, Pattamaprapanont P, Mortensen B, Krarup NT, Barrès R. Endurance training remodels sperm-borne small RNA expression and methylation at neurological gene hotspots. Clin Epigenetics. 2018;10:12.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA. The presence, role and clinical use of spermatozoal RNAs. Hum. Reprod. Update. 2013a;19:604–24.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine Network. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013b;19:604–24.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Johnson GD, Mackie P, Jodar M, Moskovtsev S, Krawetz SA. Chromatin and extracellular vesicle associated sperm RNAs. Nucleic Acids Res. 2015;43:6847–59.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jones RC. To store or mature spermatozoa? The primary role of the epididymis. Int J Androl. 1999;22:57–67.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kierszenbaum AL, Tres LL. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975;65:258–70.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kleene KC, Kleene KC. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells. Cytogenet Genome Res. 2003;103:217–24.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011;6:e24821.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Kotaja N. MicroRNAs and spermatogenesis. Fertil Steril. 2014;101:1552–62.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. A survey of small RNAs in human sperm. Hum Reprod. 2011;26:3401–12.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development. 2004;131:839–49.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22:908–17.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Laiho A, Kotaja N, Gyenesei A, Sironen A. Transcriptome profiling of the murine testis during the first wave of spermatogenesis. PLoS One. 2013;8:e61558.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lane M, Zander-Fox DL, Robker RL, McPherson NO. Peri-conception parental obesity, reproductive health, and transgenerational impacts. Trends Endocrinol Metab. 2015;26:84–90.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Lehtiniemi T, Kotaja N. Germ granule-mediated RNA regulation in male germ cells. Reproduction. 2018;155:R77–91.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Li L-C. Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics. 2014;9:45–52.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Liu W-M, Pang RTK, Chiu PCN, Wong BPC, Lao K, Lee K-F, Yeung WSB. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109:490–4.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Matthews SG. Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol Metab. 2002;13:373–80.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014;28:812–28.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Miller D, Briggs D, Snowden H, Hamlington J, Rollinson S, Lilford R, Krawetz SA. A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene. 1999;237:385–92.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Moazed D. Small RNAs in transcriptional gene silencing and genome defence. Nature. 2009;457:413–20.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34:13–25.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Nilsson EE, Sadler-Riggleman I, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease. Environ. epigenetics. 2018;4:dvy016.CrossRefGoogle Scholar
  75. 75.
    Ornellas F, Carapeto PV, Mandarim-de-Lacerda CA, Aguila MB. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies. J Pediatr. 2017;93:551–9.CrossRefGoogle Scholar
  76. 76.
    Öst A, Lempradl A, Casas E, Weigert M, Tiko T, Deniz M, Pantano L, Boenisch U, Itskov PM, Stoeckius M, et al. Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 2014;159:1352–64.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Ostermeier GC, Dix DJ, Miller D, Khatri P, Krawetz SA. Spermatozoal RNA profiles of normal fertile men. Lancet. 2002;360:772–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature. 2004;429:154.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ostermeier GC, Goodrich RJ, Moldenhauer JS, Diamond MP, Krawetz SA. A suite of novel human spermatozoal RNAs. J. Androl. 2005;26:70–4.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Pang TY, Short AK, Bredy TW, Hannan AJ. Transgenerational paternal transmission of acquired traits: stress-induced modification of the sperm regulatory transcriptome and offspring phenotypes. Curr Opin Behav Sci. 2017;14:140–7.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Panzeri I, Pospisilik JA. Epigenetic control of variation and stochasticity in metabolic disease. Mol. Metab. 2018;14:26–38.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y, et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res. 2012;22:1609–12.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Pigeyre M, Yazdi FT, Kaur Y, Meyre D. Recent progress in genetics, epigenetics and metagenomics unveils the pathophysiology of human obesity. Clin Sci (Lond). 2016;130:943–86.CrossRefGoogle Scholar
  84. 84.
    Radford EJ. Exploring the extent and scope of epigenetic inheritance. Nat Rev Endocrinol. 2018;14:345–55.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rassoulzadegan M, Cuzin F. Nutrition meets heredity: a case of RNA-mediated transmission of acquired characters. Environ. Epigenetics. 2018;4:dvy006.CrossRefGoogle Scholar
  86. 86.
    Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F. RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature. 2006;441:469–74.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Reilly JN, McLaughlin EA, Stanger SJ, Anderson AL, Hutcheon K, Church K, Mihalas BP, Tyagi S, Holt JE, Eamens AL, et al. Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep. 2016;6:31794.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, Pillai RS. Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature. 2011;480:264–7.PubMedCrossRefGoogle Scholar
  89. 89.
    Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm MicroRNA content and reprograms offspring HPA stress Axis regulation. J Neurosci. 2013;33:9003–12.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci. 2015;112:13699–704.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rowold d’H E, Schulze L, Van der Auwera S, Grabe HJ. Paternal transmission of early life traumatization through epigenetics: do fathers play a role? Med. Hypotheses. 2017;109:59–64.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Saitou M, Barton SC, Surani MA. A molecular programme for the specification of germ cell fate in mice. Nature. 2002;418:293–300.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Schorn AJ, Gutbrod MJ, LeBlanc C, Martienssen R. LTR-retrotransposon control by tRNA-derived small RNAs. Cell. 2017;170:61–71.. e11PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Sendler E, Johnson GD, Mao S, Goodrich RJ, Diamond MP, Hauser R, Krawetz SA. Stability, delivery and functions of human sperm RNAs at fertilization. Nucleic Acids Res. 2013;41:4104–17.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351:391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sharma U, Sun F, Conine CC, Reichholf B, Kukreja S, Herzog VA, Ameres SL, Rando OJ. Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell. 2018;46:481–494.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Short AK, Fennell KA, Perreau VM, Fox A, O’Bryan MK, Kim JH, Bredy TW, Pang TY, Hannan AJ. Elevated paternal glucocorticoid exposure alters the small noncoding RNA profile in sperm and modifies anxiety and depressive phenotypes in the offspring. Transl Psychiatry. 2016;6:e837.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Sipilä P, Björkgren I. Segment-specific regulation of epididymal gene expression. Reproduction. 2016;152:R91–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Sorscher N, Cohen LJ. Trauma in children of holocaust survivors: transgenerational effects. Am J Orthopsychiatry. 1997;67:493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, Barthes P, Kokkinaki M, Nef S, Gnirke A, et al. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep. 2013;3:2179–90.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Spadafora C. The “evolutionary field” hypothesis. Non-Mendelian transgenerational inheritance mediates diversification and evolution. Prog Biophys Mol Biol. 2018;134:27–37.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Suh N, Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development. 2011;138:1653–61.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sun J, Lin Y, Wu J. Long non-coding RNA expression profiling of mouse testis during postnatal development. PLoS One. 2013;8:e75750.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Tang F, Kaneda M, O’Carroll D, Hajkova P, Barton SC, Sun YA, Lee C, Tarakhovsky A, Lao K, Surani MA. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21:644–8.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Watanabe T, Cheng E, Zhong M, Lin H. Retrotransposons and pseudogenes regulate mRNAs and lncRNAs via the piRNA pathway in the germline. Genome Res. 2015;25:368–80.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Weick E-M, Miska EA. piRNAs: from biogenesis to function. Development. 2014;141:3458–71.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Western P. Foetal germ cells: striking the balance between pluripotency and differentiation. Int J Dev Biol. 2009;53:393–409.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43:D146–52.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Yeshurun S, Hannan AJ. Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry. 2018;Google Scholar
  110. 110.
    Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, Xu C, Yan W. Mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol. Open. 2015;4:212–23.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143:635–47.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Zhang P, Kang J-Y, Gou L-T, Wang J, Xue Y, Skogerboe G, Dai P, Huang D-W, Chen R, Fu X-D, et al. MIWI and piRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Res. 2015;25:193–207.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zhang X, Gao F, Fu J, Zhang P, Wang Y, Zeng X. Systematic identification and characterization of long non-coding RNAs in mouse mature sperm. PLoS One. 2017;12:e0173402.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, Liebers R, Zhang L, Qu Y, Qian J, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20:535–40.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Zimmermann C, Stévant I, Borel C, Conne B, Pitetti J-L, Calvel P, Kaessmann H, Jégou B, Chalmel F, Nef S. Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis. Mol Endocrinol. 2015;29:627–42.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Biomedicine, Research Centre for Integrative Physiology and PharmacologyUniversity of TurkuTurkuFinland

Personalised recommendations