Essential Oil Encapsulated in Nanoparticles for Treatment of Skin Infections

  • Hercília Maria Lins Rolim
  • Thais Cruz Ramalho


Skin infections are usually caused by bacteria (Staphylococcus and Streptococcus), fungi, or viruses. The treatment is essential to maintain tissue function and aesthetics. The use of essential oils as antimicrobial agents is studied as a viable option in the healing. Nano-encapsulation increases the physical stability of essential oils, enhances bioactivity, reduce toxicity, decreases volatility, and protects it from environmental interactions. Recent studies have shown that nanoparticles containing essential oils have significant antimicrobial potential against multidrug-resistant pathogens. The aim of this chapter is to discuss various studies on essential oils in combination with nanoparticles for the treatment of cutaneous infections.


Essential oils Nanotechnology Cutaneous infections Antimicrobial potential 


  1. Abdellatif AO, Alkarib SY (2018) Development and formulation of liposome encapsulated silver nanoparticles and tea tree oil for skin infections. J Med Microbiol Diagn 7:64–73Google Scholar
  2. Anghel I, Holban AM, Andronescu E, Grumezescu AM, Chifiriuc MC (2013) Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to Candida albicans biofilm development. Biointerphases 8:12PubMedCrossRefGoogle Scholar
  3. Badea ML, Iconaru SL, Groza A, Chifiriuc MC, Beuran M, Predoi D (2019) Peppermint essential oil-doped hydroxyapatite nanoparticles with antimicrobial properties. Molecules 24:1–13CrossRefGoogle Scholar
  4. Balasubramani S, Moola AK, Vivek K, Kumari BDR (2018) Formulation of nanoemulsion from leaves essential oil of Ocimum basilicum L. and its antibacterial, antioxidant and larvicidal activities (Culex quinquefasciatus). Microb Pathog 125:475–485CrossRefGoogle Scholar
  5. Bilcu M, Grumezescu AM, Oprea AE, Popescu RC, Mogoşanu GD, Hristu R, Stanciu GA, Mihailescu DF, Lazar V, Bezirtzoglou E, Chifiriuc MC (2014) Efficiency of vanilla, patchouli and ylang–ylang essential oils stabilized by iron oxide@C14 nanostructures against bacterial adherence and biofilms formed by Staphylococcus aureus and Klebsiella pneumoniae clinical strains. Molecules 19:17943–17956PubMedPubMedCentralCrossRefGoogle Scholar
  6. Carbone C, Teixeira MC, Sousa MC, Martins-Gomes C, Silva AM, Souto EMB, Musumeci T (2019) Clotrimazole-loaded mediterranean essential oils NLC: a synergic treatment of Candida skin infections. Pharmaceutics 11:231–243PubMedCentralCrossRefPubMedGoogle Scholar
  7. Cerreto F, Paolicelli P, Cesa S, Abu Amara HM, D’Auria FD, Simonetti G, Casadei MA (2013) Solid lipid nanoparticles as effective reservoir systems for long-term preservation of multidose formulations. AAPS J 14:847–853Google Scholar
  8. Chifiriuc C, Grumezescu V, Grumezescu AM, Saviuc C, Lazar V, Andronescu E (2012) Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Res Lett 7:209PubMedPubMedCentralCrossRefGoogle Scholar
  9. Comin VM, Lopes LQS, Quatrin PM, Souza ME, Bonez PC, Pintos FG, Raffin RP, Vaucher RA, Martinez DST, Santos RCV (2016) Influence of Melaleuca alternifolia oil nanoparticles on aspects of Pseudomonas aeruginosa biofilm. Microb Pathog 93:120–125PubMedCrossRefGoogle Scholar
  10. Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh P, Sharma S, Dudey (2019) Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. Int J Biol Macromol 133:294–305PubMedCrossRefGoogle Scholar
  11. De Oliveira EF, Paula HCB, De Paula RCM (2014) Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B Biointerfaces 113:146–151PubMedCrossRefGoogle Scholar
  12. Detoni CB, Cabral-Albuquerque EC, Hohlemweger SV, Sampaio C, Barros TF, Velozo ES (2009) Essential oil from Zanthoxylum tingoassuiba loaded into multilamellar liposomes useful as antimicrobial agents. J Microencapsul 26:684–691PubMedCrossRefGoogle Scholar
  13. Fazly Bazzaz BS, Khameneh B, Namazi N, Iranshahi N, Davoodi D, Golmohammadzadeh (2018) Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol 66:506–513PubMedCrossRefGoogle Scholar
  14. Freire NB, Pires LCSR, Oliveira HP, Costa MM (2018) Antimicrobial and antibiofilm activity of silver nanoparticles against Aeromonas spp. isolated from aquatic organisms. Pesq Vet Bras 38:244–249CrossRefGoogle Scholar
  15. Ghodrati M, Farahpour MR, Hamishehkar H (2019) Encapsulation of Peppermint essential oil in nanostructured lipid carriers: in-vitroantibacterial activity and accelerative effect on infected wound healing. Colloids Surf A Physicochem Eng Asp 564:162–169CrossRefGoogle Scholar
  16. Gortzi O, Lalas S, Chinou I, Tsaknis J (2006) Reevaluation of antimicrobial and antioxidant activity of Thymus sp. extracts before and after encapsulation in liposomes. J Food Prot 69:2998–3005PubMedCrossRefPubMedCentralGoogle Scholar
  17. Gortzi O, Lalas S, Chinou I, Tsaknis J (2007) Evaluation of the antimicrobial and antioxidant activities of Origanum dictamnus extracts before and after encapsulation in liposomes. Molecules 12:932–945PubMedPubMedCentralCrossRefGoogle Scholar
  18. Grumezescu AM, Chifiriuc MC, Saviuc C, Grumezescu V, Hristu R, Mihaiescu DE, Stanciu GA, Andronescu E (2012) Hybrid nanomaterial for stabilizing the antibiofilm activity of Eugenia caryophyllata essential oil. IEEE T Nano Bio Sci 11:360–365CrossRefGoogle Scholar
  19. Hamed SF, Sadek Z, Edris A (2012) Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J Oleo Sci 61:641–648PubMedCrossRefGoogle Scholar
  20. Hasani S, Ojagh SM, Ghorbani M (2018) Nanoencapsulation of lemon essential oil in chitosan-Hicap system. Part 1: study on its physical and structural characteristics. Int J Biol Macromol 115:143–151PubMedCrossRefGoogle Scholar
  21. Hosseini SF, Zandi M, Rezaei M, Farahmandghavi F (2013) Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym 95:50–56PubMedCrossRefGoogle Scholar
  22. Hu Y, Yang Y, Ning Y, Wang C, Tong Z (2013) Facile preparation of Artemisia argyi oil-loaded antibacterial microcapsules by hydroxyapatite-stabilizedpickering emulsion templating. Colloids Surf B Biointerfaces 112:96–102PubMedCrossRefGoogle Scholar
  23. Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 1:19Google Scholar
  24. Khalaf HH, Sharoba AM, El-Tanahi HH, Morsy MK (2013) Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on Turkey deli meat quality. J Food Dairy Sci Mansoura Univ 4:557–573Google Scholar
  25. Khezri K, Farahpour MR, Rad SM (2019) Accelerated infected wound healing by topical application of encapsulated rosemary essential oil into nanostructured lipid carriers. Artif Cell Nanomed Biotechnol 47:980–988CrossRefGoogle Scholar
  26. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver nanoparticle embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241PubMedCrossRefGoogle Scholar
  27. Liolios CC, Gortzi O, Lalas S, Tsaknis J, Chinou I (2009) Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L: and in vitro antimicrobial activity. Food Chem 112:77–783CrossRefGoogle Scholar
  28. Morsy MK, Khalaf HH, Sharoba AM, El-Tanahi HH, Cutter CN (2014) Incorporation of essential oils and nanoparticles in pullulan films to control foodborne pathogens on meat and poultry products. J Food Sci 79:675–684CrossRefGoogle Scholar
  29. Nasseri M, Golmohammadzadeh S, Arouiee H, Jaafari MR, Neamati H (2016) Antifungial activity of Zataria multiflora essencial oil-loaded solid lipid nanoparticles in vitro condition. Iran J Basic Med Sci 19:1231–1237PubMedPubMedCentralGoogle Scholar
  30. Niska K, Zielina E, Radomski MW, Inkielewicz-Stepniak I (2018) Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem Biol Interact 295:38–51PubMedCrossRefGoogle Scholar
  31. Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, Davamani F (2019) Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS One 14:1–13Google Scholar
  32. Ramadan MA, Shawkey AE, Mohamed AR, Abdellatif AO (2019) Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. J Herb Med 100289Google Scholar
  33. Saporito F, Sandri G, Benferoni MV, Rossi S, Boselli C, Cornaglia IA, Mannucci B, Grisoli P, Vigani B, Ferrari F (2018) Essencial oil-loaded lipid nanoparticles for wound healing. Int J Nanomedicine 12:175–186Google Scholar
  34. Scandorieiro S, Camargo LC, Lancheros CAC, Yamada-Ogatta SF, Nakamura CV, Oliveira AG, Andrade CGTJ, Duran N, Nakazato G, Kobayashi RKT (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol 7:760PubMedPubMedCentralCrossRefGoogle Scholar
  35. Sheikholeslami S, Mousavi SE, Ashtiani HRA, Doust SRH, Rezayat SM (2016) Antibacterial activity of silver nanoparticles and their combination with Zataria multiflora essential oil and methanol extract. Jundishapur J Microbiol 9:360–370CrossRefGoogle Scholar
  36. Shortridge D, Flamm RK (2019) Comparative in vitro activites of new antibiotics for the treatment of skin infections. Clin Infect Dis 68:200–2005CrossRefGoogle Scholar
  37. Soulaimani B, Nafis A, Kasrati A, Rochdi A, Mezrioui NE, Abbad A, Hassani L (2019) Chemical composition, antimicrobial activity and synergistic potencial of essential oil from endemic Lavandula maroccana (Mill.). S Afr J Bot 125:202–206CrossRefGoogle Scholar
  38. Souza ME, Lopes LQS, Bonez PC, Gundel A, Martinez DST, Sagrillo MR, Giongo JL, Vaucher RA, Raffin RP, Boligon AA, Santos RCV (2017) Melaleuca alternifolia nanoparticles against Candida species biofilms. Microb Pathog 104:125–132PubMedCrossRefPubMedCentralGoogle Scholar
  39. Svetlichny G, Külkamp-Guerreiro IC, Cunha SL, Silva FE, Bueno K, Pohlmann AR, Fuentefria AM, Guterres SS (2015) Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity. Pharmazie 70:155–164PubMedGoogle Scholar
  40. Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzier K, Fangrat Z, Zielinska-Jurek A, Kus PM, Milewski S (2015) Essential oils, silver nanoparticles and propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol 55:175–183PubMedCrossRefGoogle Scholar
  41. Thakur K, Sharma G, Singh B, Chhibber S, Katare OP (2018) Current state of nanomedicines in the treatment of topical infectious disorders. Recent Pat Antiinfect Drug Discov 13:127–150PubMedCrossRefPubMedCentralGoogle Scholar
  42. Yilmaz MT, Yilmaz A, Akman PK, Bozkurt F, Dertli E, Basahel A, Al-Sasi B, Taylan O, Sagdic O (2019) Electrospraying method for fabrication of essential oil loaded-chitosan nanoparticle delivery systems characterized by molecular, thermal, morphological and antifungal properties. Innov Food Sci Emerg Technol 52:166–178CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hercília Maria Lins Rolim
    • 1
  • Thais Cruz Ramalho
    • 1
  1. 1.Laboratory of Pharmaceutical Nanosystems—NANOSFAR, Postgraduate Program in Pharmaceutical SciencesFederal University of PiauíTeresinaBrazil

Personalised recommendations