Skip to main content

Catalytic Ammonia Decomposition for Hydrogen Production: Utilization of Ammonia in a Fuel Cell

  • Chapter
  • First Online:
Book cover Sustainable Ammonia Production

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Ammonia is one of the best potential hydrogen storage materials, having a high volumetric (121 kg H2/m3) and gravimetric (17.75 wt%) hydrogen capacity. Its properties fully correspond to the DOE’s (Department of Environment, USA) hydrogen storage requirements as a commercial hydrogen storage material. Ammonia can be used for onboard clean (COX free) hydrogen generation (2NH3 ⇔ N2 + 3H2) for fuel cell-driven vehicles. The main challenge of using ammonia to produce clean hydrogen via an onboard catalytic decomposition process necessitates a catalyst able to decompose 100% ammonia at a low temperature (≥400 °C) and supply pure hydrogen to the fuel cell. Currently, only ruthenium-based catalysts showed activity to complete decomposition of ammonia at 400 °C and above but the scarcity of precious ruthenium put an economic constraint in the wide application of ruthenium-based catalysts and drive researchers to look for alternative (non-precious) catalytic materials for this reaction. This chapter describes briefly about hydrogen and current hydrogen production and storage technologies, the cost of hydrogen production from different processes, ammonia and current status of ammonia production followed by a detailed discussion of different ammonia decomposition catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doelle M (2004) Climate change and human rights: the role of international human rights in motivating states to take climate change seriously. Macquarie J Int Comp Environ Law 1:179

    Google Scholar 

  2. IPCC fourth assessment report (2007)

    Google Scholar 

  3. High human cost of weather-related disasters detailed in report, News and Media, United Nations Radio (2015)

    Google Scholar 

  4. Muroyama H, Saburi C, Matsui T, Eguchi K (2012) Ammonia decomposition over Ni/La2O3 catalyst for on-site generation of hydrogen. Appl Catal A: Gen 443–444:119–124. https://doi.org/10.1016/j.apcata.2012.07.031

    Article  CAS  Google Scholar 

  5. William IFD, Joshua WM, Samantha KC, Hazel MAH, James DT, Thomas JW, Martin OJ (2014) Hydrogen production from ammonia using sodium amide. J Am Chem Soc 136:13082–13085. https://doi.org/10.1021/ja5042836

    Article  CAS  Google Scholar 

  6. Yin SF, Xu BQ, Zhou XP, Au CT (2004) A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl Catal A 277:1–9. https://doi.org/10.1016/j.apcata.2004.09.020

    Article  CAS  Google Scholar 

  7. Léon A (ed) (2008) Hydrogen technology: mobile and portable applications. Springer series in green energy and technology. Springer

    Google Scholar 

  8. Web source: https://energy.gov/eere/energybasics/articles/hydrogen-and-fuel-cell-technology-basics

  9. Web source: www.HydrogenAssociation.org

  10. Cheddie D (2012) Ammonia as a hydrogen source for fuel cells: a review. In: Minic D (ed) Hydrogen energy—challenges and perspectives. InTech. https://doi.org/10.5772/47759

    Google Scholar 

  11. Avery WH (1988) A role for ammonia in the hydrogen economy. Int J Hydrogen Energy 13:761–773. https://doi.org/10.1016/0360-3199(88)90037-7

    Article  CAS  Google Scholar 

  12. Christensen CH, Johannessen T, Sorensen RZ, Norskov JK (2006) Towards an ammonia-mediated hydrogen economy. Catal Today 111:140–144. https://doi.org/10.1016/j.cattod.2005.10.011

    Article  CAS  Google Scholar 

  13. Jensen JO, Vestbo AP, Li Q, Bjerrum NJ (2007) The energy efficiency of onboard hydrogen storage. J Alloys Compd 446–447:723–728. https://doi.org/10.1016/j.jallcom.2007.04.051

    Article  CAS  Google Scholar 

  14. Web source: United States geological survey publication. https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2011-nitro.pdf

  15. Web source: United States geological survey publication: https://minerals.usgs.gov/minerals/pubs/commodity/nitrogen/mcs-2017-nitro.pdf

  16. Web source: http://www.roperld.com/science/minerals/ammonia.htm

  17. Web source: http://www.greener-industry.org.uk/pages/ammonia/1ammoniaapq.htm

  18. Clausen JF, Zee CA, TRW-Systems and Energy, EPA Contract 68-02-2635

    Google Scholar 

  19. International Energy Agency (IEA) (2007) Key world energy statistics

    Google Scholar 

  20. B.P. Statistical review of world energy, June 2007.

    Google Scholar 

  21. Schlogl R (2003) Catalytic synthesis of ammonia—a “never-ending story”? Angew Chem Int Ed 42:2004–2008. https://doi.org/10.1002/anie.200301553

    Article  CAS  Google Scholar 

  22. Appl M (2007) Ullmann’s encyclopedia of industrial chemistry: ammonia. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  23. Kaye IW, Bloomfield DP (1998) Portable ammonia powered fuel cell. In: Conference of power source, pp 408–409

    Google Scholar 

  24. Lipman T, Shah N (2007). UC Berkeley Transportation Sustainability Research Center, UC Berkeley. Retrieved from: http://escholarship.org/uc/item/7z69v4wp

  25. White AH, Melville WM (1905) The decomposition of ammonia at high temperatures. J Am Chem Soc 27:373–386. https://doi.org/10.1021/ja01982a005

    Article  CAS  Google Scholar 

  26. Haber F, Van Oordt G (1904) Z Anorg Chem 43:111; 44:341 (1905); Topham SA (1985) The history of the catalytic synthesis of ammonia. In: Anderson JR et al (eds) Catalysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93281-6_1

    Google Scholar 

  27. Hansen JB (1995) In: Nielsen A (ed) Ammonia, catalysis and manufacture. Springer, Heidelberg, pp 149–198

    Google Scholar 

  28. Tsai W, Weinberg WH (1987) Steady-state decomposition of ammonia on the ruthenium (001) surface. J Phys Chem 91:5307. https://doi.org/10.1021/j100304a034

    Article  Google Scholar 

  29. Chellappa AS, Fischer CM, Thomson WJ (2002) Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl Catal A: Gen 227:231–240. https://doi.org/10.1016/S0926-860X(01)00941-3

    Article  CAS  Google Scholar 

  30. Green L (1982) An ammonia energy vector for hydrogen economy. Int J Hydrogen Energy 7:355–359. https://doi.org/10.1016/0360-3199(82)90128-8

    Article  CAS  Google Scholar 

  31. Bell TE, Torrent-Murciano L (2016) H2 production via ammonia decomposition using non-Noble metal catalysts: a review. Top Catal 59:1438–1457. https://doi.org/10.1007/s11244-016-0653-4

    Article  CAS  Google Scholar 

  32. Georgeta P, Aline A (2011) The poisoning level of Pt/C catalysts used in PEM fuel cells by the hydrogen feed gas impurities: the bonding strength. Int J Hydrogen Energy 36:6817–6825. https://doi.org/10.1016/j.ijhydene.2011.03.018

    Article  CAS  Google Scholar 

  33. Yin SF, Zhang QH, Xu BQ, Zhu WX, Ng CF, Au CT (2004) Investigation on the catalysis of COx-free hydrogen generation from ammonia. J Catal 224:384–396. https://doi.org/10.1016/j.jcat.2004.03.008

    Article  CAS  Google Scholar 

  34. Klerke A, Christensen CH, Nørskov JK, Vegge T (2008) Ammonia for hydrogen storage: challenge and opportunities. J Mater Chem 18:2304–2310. https://doi.org/10.1039/B720020J

    Article  CAS  Google Scholar 

  35. Podila S, Zaman SF, Driss H, Alhamed Y, Al-Zahrani AA, Petrov LA (2016) Hydrogen production by ammonia decomposition using high surface area Mo2N and Co3Mo3N catalysts. Catal Sci Technol 6:1496–1506. https://doi.org/10.1039/C5CY00871A

    Article  CAS  Google Scholar 

  36. Yin SF, Xu BQ, Wang SJ, Ng CF, Au CT (2004) Magnesia-carbon nanotubes (MgO–CNTs) nanocomposite: novel support of Ru catalyst for the generation of COx-free hydrogen from ammonia. Cat Lett 96:113–116. https://doi.org/10.1023/B:CATL.0000

    Article  CAS  Google Scholar 

  37. Choudhary TV, Sivadinarayana C, Goodman DW (2001) Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal Lett 72:197–201. https://doi.org/10.1023/A:1009023825549

    Article  CAS  Google Scholar 

  38. Ganley JC, Thomas FS, Seebauer EG, Masel RI (2004) A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal Lett 96(3–4):117–122. https://doi.org/10.1023/B:CATL.0000030108.50691.d4

    Article  CAS  Google Scholar 

  39. Li L, Zhu ZH, Yan ZF, Lu GQ, Rintoul L (2007) Catalytic ammonia decomposition over Ru/carbon catalysts: the importance of the structure of carbon support. Appl Catal A: Gen 320:166–172. https://doi.org/10.1016/j.apcata.2007.01.029

    Article  CAS  Google Scholar 

  40. Egawa C, Nishida T, Naito S, Tamaru K (1984) ammonia decomposition on (1 1 10) and (0 0 1) surfaces of ruthenium. J Chem Soc Faraday Trans 1: Phys Chem Condens Phases 80:1595–1604. https://doi.org/10.1039/f19848001595

    Article  CAS  Google Scholar 

  41. Dietrich H, Jacobi K, Ertl G (1996) Decomposition of NH3 on Ru(111). Surf Sci 352–354:138–141. https://doi.org/10.1016/0039-6028(95)01120-X

    Article  Google Scholar 

  42. Zheng W, Zhang J, Zhu B, Blume R, Zhang Y, Schlichte K, Schlögl R, Schüth F, Su DS (2010) Structure–function correlation for Ru/CNT in the catalytic decomposition of ammonia. ChemSusChem 39:226–230. https://doi.org/10.1002/cssc.200900217

    Article  CAS  Google Scholar 

  43. Sorensen RZ, Nielsen LJE, Jensen S, Hansen O, Johannesen T, Quaade U, Christensen CH (2005) Catalytic ammonia decomposition: miniaturized production of COx-free hydrogen for fuel cells. Catal Commun 6:229–232. https://doi.org/10.1016/j.catcom.2005.01.005

    Article  CAS  Google Scholar 

  44. Wang Z, Cai Z, Wei Z (2019) Highly active ruthenium catalyst supported on barium hexaaluminate for ammonia decomposition to COx-free hydrogen. ACS Sustain Chem Eng 7(9):8226–8235. https://doi.org/10.1021/acssuschemeng.8b06308

    Article  CAS  Google Scholar 

  45. (a) Robertson AJB  (1975) The early history of catalysis. Platin Met Rev 19:64–69. (b) Amano A, Taylor H (1954) The decomposition of ammonia on ruthenium, rhodium and palladium catalysts supported on alumina. J Am Chem Soc 76:4201–4204. https://doi.org/10.1021/ja01645a057

    Article  CAS  Google Scholar 

  46. Tanaka KI, Tamaru K (1966) On one general principle of the catalytic activity of metals. Kinetikai Kataliz 7:242–247

    CAS  Google Scholar 

  47. Papapolymerou G, Bontozoglou V (1997) Decomposition of NH3 on Pd and Ir comparison with Pt and Rh. J Mol Catal A: Chem 120:165–171. https://doi.org/10.1016/S1381-1169(96)00428-1

    Article  CAS  Google Scholar 

  48. Zhang J, Comotti M, Schuthe F, Schlogl R, Su DS (2007) Commercial Fe- or Co-containing carbon nanotubes as catalysts for NH3 decomposition. Chem Commun 19:1916–1918. https://doi.org/10.1039/B700969K

    Article  Google Scholar 

  49. Lendzion-Bielun Z, Pelka R, Arabczyk W (2009) Study of the kinetics of ammonia synthesis and decomposition on iron and cobalt catalysts. Catal Lett 129:119–121. https://doi.org/10.1007/s10562-008-9785-x

    Article  CAS  Google Scholar 

  50. Zhang H, Alhamed YA, Al-Zahrani AA, Daous MA, Inokawa H, Kojima Y, Petrov LA (2014) Tuning catalytic performances of cobalt catalysts for clean hydrogen generation via variation of the type of carbon support and catalyst post-treatment temperature. Int J Hydrogen Energy 39:17573–17582. https://doi.org/10.1016/j.ijhydene.2014.07.183

    Article  CAS  Google Scholar 

  51. Zhang J, Xu HY, Jin XL, Ge QJ, Li WZ (2006) Highly efficient Ru/MgO catalysts for NH3 decomposition: synthesis, characterization and promoter effect. Catal Commun 7:148–152. https://doi.org/10.1016/j.catcom.2005.10.002

    Article  CAS  Google Scholar 

  52. Zhao C, Yang Y, Wu Z, Fiel M, Fang XJ (2014) Synthesis and facile size control of well-dispersed cobalt nanoparticles supported on ordered mesoporous carbon. J Mater Chem A 2:19903–19913. https://doi.org/10.1039/C4TA04561K

    Article  CAS  Google Scholar 

  53. Podila S, Alhamed YA, AlZahrani AA, Petrov LA (2015) Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems. Int J Hydrogen Energy 40:15411–15422. https://doi.org/10.1016/j.ijhydene.2015.09.057

    Article  CAS  Google Scholar 

  54. Gu YQ, Jin Z, Zhang H, Xu RJ, Zheng MJ, Guo YM, Song QS, Jia CJ (2015) Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for COx-free hydrogen production from ammonia. J Mater Chem A 3:17172–17180. https://doi.org/10.1039/C5TA04179A

    Article  CAS  Google Scholar 

  55. Love KS, Emmett PH (1941) The catalytic decomposition of ammonia over iron synthetic ammonia catalysts. J Am Chem Soc 63:3297–3308. https://doi.org/10.1021/ja01857a019

    Article  CAS  Google Scholar 

  56. Dannstadt S (2000) Ullmann’s encyclopedia of industrial chemistry. Wiley, Weinheim

    Google Scholar 

  57. Schlögl R (2008) Ammonia synthesis. In: Ertl G et al (eds) Handbook of heterogeneous catalysis. Wiley

    Google Scholar 

  58. Mittasch A, Frankenburg W (1950). Early studies of multicomponent catalysts. In: Komarewsky VI, Frankenburg WG, Rideal EK (eds) Advances in catalysis. Academic Press, pp 81–104. https://doi.org/10.1016/s0360-0564(08)60375-2

    Google Scholar 

  59. (a) Zheng W (2011) Nanomaterials for ammonia decomposition. Ph.D. thesis, Universitat Berlin. (b) Zheng W, Cotter TP, Kaghazchi P, Jacob T, Frank B, Schlichte K, Zhang W,  Su DS, Schüth F,  Schlögl R (2013) Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. J Am Chem Soc 135:3458–3464. https://doi.org/10.1021/ja309734u

    Article  CAS  Google Scholar 

  60. Arabczyk W, Zamlynny J (1999) Study of the ammonia decomposition over iron catalysts. Catal Lett 60:167–171. https://doi.org/10.1023/A:101900702

    Article  CAS  Google Scholar 

  61. Kielbasa K, Pelka R, Arabczyk W (2010) Studies of the kinetics of ammonia decomposition on promoted nanocrystalline iron using gas phases of different nitriding degree. J Phys Chem A 114:4531–4534. https://doi.org/10.1021/jp9099286

    Article  CAS  Google Scholar 

  62. Zhang J, Xu H, Li W (2005) Kinetic study of NH3 decomposition over Ni nanoparticles: the role of La promoter, structure sensitivity and compensation effect. Appl Catal A 296:257–267. https://doi.org/10.1016/j.apcata.2005.08.046

    Article  CAS  Google Scholar 

  63. Tsai W, Vajo JJ, Weinberg WH (1985) Inhibition by hydrogen of the heterogeneous decomposition of ammonia on platinum. J Phys Chem 89:4926–4932. https://doi.org/10.1021/j100269a009

    Article  CAS  Google Scholar 

  64. Roy SK, Ray N, Mukheriee D (1975) Kinetics and mechanism of ammonia decomposition over alumina supported nickel catalysts. Plan Dev Div 41:485–495

    CAS  Google Scholar 

  65. Okura K, Miyazaki K, Muroyama H, Matsui T, Eguchi K (2018) Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Adv. 8:32102–32110. https://doi.org/10.1039/C8RA06100A

    Article  CAS  Google Scholar 

  66. Duan X, Qian G, Liu Y, Ji J, Zhou X, Chen D, Yuan W (2013) Structure sensitivity of ammonia decomposition over Ni catalysts: a computational and experimental study. Fuel Process Technol 108:112–117. https://doi.org/10.1016/j.fuproc.2012.05.030

    Article  CAS  Google Scholar 

  67. Ertl G, Rustig J (1982) Decomposition of NH3 on nickel: absence of a magneto-catalytic effect. Surf Sci 119:314–318. https://doi.org/10.1016/0039-6028(82)90173-X

    Article  Google Scholar 

  68. McCabe RW (1983) Kinetics of ammonia decomposition on nickel. J Catal 79:445–450. https://doi.org/10.1016/0021-9517(83)90337-8

    Article  CAS  Google Scholar 

  69. Liu H, Wang H, Shen J, Sun Y, Liu Z (2008) Promotion effect of cerium and lanthanum oxides on Ni/SBA-15 catalyst for ammonia decomposition. Catal Today 131:444–449. https://doi.org/10.1016/j.cattod.2007.10.048

    Article  CAS  Google Scholar 

  70. Deng QF, Zhang H, Hou XX, Ren TZ, Yunan ZY (2012) High-surface-area Ce0.8Zr0.2O2 solid solutions supported catalysts for ammonia decomposition to hydrogen. Int J Hydrogen Energy 37:15901–15907. https://doi.org/10.1016/j.ijhydene.2012.08.069

    Article  CAS  Google Scholar 

  71. Cao JL, Yan ZL, Deng QF, Wang Y, Yuan ZY, Sun G, Jia TK, Wang XD, Bala H, Zhang ZY (2015) Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. Int J Hydrogen Energy 39:15411–15422. https://doi.org/10.1016/j.ijhydene.2014.01.169

    Article  CAS  Google Scholar 

  72. Zhang J, Xu H, Jin X, Ge Q, Li W (2005) Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La–Al2O3 catalysts for NH3 decomposition. Appl Catal A: Gen 290:87–96. https://doi.org/10.1016/j.apcata.2005.05.020

    Article  CAS  Google Scholar 

  73. Web source: https://www.strem.com/uploads/resources/documents/electroless_deposition_for_the_synthesis_of_bimetallic_catalysts.pdf

  74. Guo W, Vlachos DG (2015) Patched bimetallic surfaces are active catalysts for ammonia decomposition. Nat Commun 6:8619–8626. https://doi.org/10.1038/ncomms9619

    Article  CAS  Google Scholar 

  75. Hansgen DA, Vlachos DG, Chen JG (2010) Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem 2:484–489. https://doi.org/10.1038/nchem.626

    Article  CAS  Google Scholar 

  76. Boisen A, Dahl S, Norskov JK, Christensen CH (2005) Why the optimal ammonia synthesis catalyst is not the optimal for ammonia decomposition. J Catal 230:309–312. https://doi.org/10.1016/j.jcat.2004.12.013

    Article  CAS  Google Scholar 

  77. Leclercq L, Provost M, Pastor H, Grimblot J, Hardy AM, Gendembre L, Leclercq G (1989) Catalytic properties of transition metal carbides: I. Preparation and physical characterization of bulk mixed carbides of molybdenum and tungsten. J Catal 117:371–383. https://doi.org/10.1016/0021-9517(89)90348-5

    Article  CAS  Google Scholar 

  78. Hansgen DA (2011) Rational catalyst design for the ammonia decomposition reaction. Ph.D. thesis

    Google Scholar 

  79. Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK (2001) Catalyst design by interpolation in the periodic table: bimetallic-ammonia synthesis catalysts. J Am Chem Soc 123:8404–8405. https://doi.org/10.1021/ja010963d

    Article  CAS  Google Scholar 

  80. Duan X, Ji J, Yan X, Qian G, Chen D, Zhou X (2016) Understanding Co–Mo catalyzed ammonia decomposition: influence of calcination atmosphere and identification of active phase. ChemCatChem 8:938–945. https://doi.org/10.1002/cctc.201501275

    Article  CAS  Google Scholar 

  81. Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63:201–254. https://doi.org/10.1016/j.surfrep.2008.02.001

    Article  CAS  Google Scholar 

  82. Zhang J, Muller JO, Zheng W, Wang D, Su D, Schlogl R (2008) Individual Fe–Co alloy nanoparticles on carbon nanotubes: structural and catalytic properties. Nano Lett 8(9):2738–2743. https://doi.org/10.1021/nl8011984

    Article  CAS  Google Scholar 

  83. Oyama ST (1996) In: Oyama ST (ed) The chemistry of transition metal carbides and nitrides. Blackie Academic and Professional, Glasgow. https://doi.org/10.1007/978-94-009-1565-7_1

    Chapter  Google Scholar 

  84. Scotti N, Kockelmann W, Senker J, Traẞel S, Jacobs H (1999) Sn3N4, a tin (IV) nitride—syntheses and the first crystal structure determination of a binary tin–nitrogen compound. Z Anorg Allg Chem 625:1435–1439. https://doi.org/10.1002/chin.199947033

    Article  CAS  Google Scholar 

  85. Petterson PM, Das TK, Davis BH (2003) Carbon monoxide hydrogenation over molybdenum and tungsten carbides. Appl Catal A 251:449–455. https://doi.org/10.1016/S0926-860X(03)00371-5

    Article  CAS  Google Scholar 

  86. Claridge JB, York APE, Brungs AJ, Marquez-Alvarez C, Sloan J, Tsang SC, Green MLH (1998) New catalysts for conversion of methane to syngas: molybdenum and tungsten carbide. J Catal 180:85–100. https://doi.org/10.1006/jcat.1998.2260

    Article  CAS  Google Scholar 

  87. Marchand R, Gouin X, Tessier F, Laurent Y (1996) In: Oyama ST (ed) The chemistry of transition metal carbides and nitrides. Blackie Academic and Professional, Glasgow, p 252, chapter 13

    Google Scholar 

  88. Mckay D (2008) Catalysis over molybdenum containing nitride materials. Ph.D. thesis, University of Glasgow. http://theses.gla.ac.uk/id/eprint/174

  89. Duan X, Qian G, Zhou X, Chen D, Yuan W (2012) MCM-41 supported CoMo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. J Chem Eng 207–208:103–108. https://doi.org/10.1016/j.cej.2012.05.100

    Article  CAS  Google Scholar 

  90. Srifa A, Okura K, Okanishi T, Muroyama H, Matsui T, Eguchi K (2016) COx-free hydrogen production via ammonia decomposition over molybdenum nitride-based catalysts. Catal Sci Technol 6:7495–7504. https://doi.org/10.1039/C6CY01566B

    Article  CAS  Google Scholar 

  91. Jolaoso LA, Zaman SF, Podila S, Driss H, Al-Zahrani AA, Daous MA, Petrov L (2018) Ammonia decomposition over citric acid induced γ-Mo2N and Co3Mo3N catalysts. Int J Hydrogen Energy 43:4839–4844. https://doi.org/10.1016/j.ijhydene.2018.01.092

    Article  CAS  Google Scholar 

  92. Zaman SF, Jolaoso LA, Podila S, Al-Zahrani AA, Alhamed YA, Daous HA, Petrov L (2018) Ammonia decomposition over citric acid chelated γ-Mo2N and Ni2Mo3N catalysts. Int J Hydrogen Energy 43:17252–17258. https://doi.org/10.1016/j.ijhydene.2018.07.085

    Article  CAS  Google Scholar 

  93. Zaman SF, Jolaoso LA, Al-Zahrani AA, Alhamed YA, Podila S, Driss H, Daous MA, Petrov L (2018) Study of Fe3Mo3N catalyst for ammonia decomposition. Bulg Chem Commun 50(Special issue H):181–188

    Google Scholar 

  94. Liang C, Li W, Wei Z, Xin Q, Li C (2000) Catalytic decomposition of ammonia over nitrided MoNx/α-Al2O3 and NiMoNy/α-Al2O3 catalysts. Ind Eng Chem Res 39:3694–3697. https://doi.org/10.1021/ie990931n

    Article  CAS  Google Scholar 

  95. Leybo DV, Baiguzhina AN, Muratov DS, Arkhipov DI, Koles-nikov EA, Levina VV, Kosova NI, Kuznetsov DV (2016) Effects of composition and production route on structure and catalytic activity for ammonia decomposition reaction of ternary Ni–Mo nitride catalysts. Int J Hydrogen Energy 41:3854–3860. https://doi.org/10.1016/j.ijhydene.2015.12.171

    Article  CAS  Google Scholar 

  96. Zaman SF (2018) A DFT study of ammonia dissociation over Mo3N2 cluster. Bulg Chem Commun 50(Special issue H):201–208

    Google Scholar 

Download references

Acknowledgements

Authors gratefully thank for the support provided by the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia. Special thanks to Professor Lachezar Angelov Petrov, SABIC Chair of Catalysis at King Abdulaziz University, for his suppot to allow Dr. Sharif F. Zaman to work in the field of ammonia decompostion reaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif Fakhruz Zaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jolaoso, L., Zaman, S.F. (2020). Catalytic Ammonia Decomposition for Hydrogen Production: Utilization of Ammonia in a Fuel Cell. In: Inamuddin, Boddula, R., Asiri, A. (eds) Sustainable Ammonia Production. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-35106-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35106-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35105-2

  • Online ISBN: 978-3-030-35106-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics