Skip to main content

Earth Abundant Catalysis for Ammonia Synthesis

  • Chapter
  • First Online:
Sustainable Ammonia Production

Part of the book series: Green Energy and Technology ((GREEN))

  • 1955 Accesses

Abstract

The sustainable ammonia (NH3) synthesis is not only one of the most attractive processes but also one of the most challenging catalytic ones under ambient conditions. The exothermic characteristic of synthesis reaction and also stability and inert behaviour of atmospheric nitrogen (N2) make the conversion of N2 to NH3 hard, while N2 is available in 78% in air. The industrial operations have been conducted under high temperature–pressure conditions by conventional Haber–Bosch process. The high energy requirement due to harsh operating conditions and the evolution of greenhouse gases (e.g. CO2) during the synthesis make this process unsustainable for NH3 synthesis. Besides, this process has made a lot of contribution to the catalysts field for nourishing, the sustainable and novel improvements have been still looked for more ambient and green synthesis process. The low synthesis efficiency and harsh operating conditions depend on the process that has still required to be improved and attracted many researchers’ interests. In this chapter, earth abundant catalysis for NH3 synthesis was gotten the point of classical and sustainable process approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagen S, Barfod R, Fehrmann R, Jacobsen Claus JH, Teunissen HT, Chorkendorff I (2003) Ammonia synthesis with barium-promoted iron-cobalt alloys supported on carbon. J Catal 214(2):327–335. https://doi.org/10.1016/S0021-9517(02)00182-3

    Article  CAS  Google Scholar 

  2. Karolewska M, Truszkiewicz E, Mierzwa B, Keopiński L, Raróg-Pilecka W (2012) Ammonia synthesis over cobalt catalysts doped with cerium and barium. effect of the ceria loading. Appl Catal A 445–446:280–286. https://doi.org/10.1016/j.apcata.2012.08.028

    Article  CAS  Google Scholar 

  3. Tamaru K (1991) In: Jennings JR (ed) Catalytic ammonia synthesis: fundamentals and practice. Plenium, New York

    Google Scholar 

  4. Jacobsen CJH (2000) Novel class of ammonia synthesis catalysts. Chem Commun 12:1057–1058. https://doi.org/10.1039/b002930k

    Article  Google Scholar 

  5. Nørskov J, Chen J, Miranda R, Fitzsimmons T, Stack R (2016) Sustainable ammonia synthesis—exploring the scientific challenges associated with discovering alternative, sustainable processes for ammonia production. DOE Roundtable Report. Dulees, VA. https://doi.org/10.2172/1283146

    Google Scholar 

  6. Van Der Ham CJM, Koper MTM, Hetterscheid DGH (2014) Challenges in reduction of dinitrogen by proton and electron transfer. Chem Soc Rev 43(15):5183–5191. https://doi.org/10.1039/c4cs00085d

    Article  CAS  Google Scholar 

  7. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim SW, Hara M, Hosono H (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4(11):934–940. https://doi.org/10.1038/nchem.1476

    Article  CAS  Google Scholar 

  8. Li XF, Li QK, Cheng J, Liu L, Yan Q, Yingchao W, Zhang XH, Wang ZY, Qiu Q, Luo Y (2016) Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J Am Chem Soc 138(28):8706–8709. https://doi.org/10.1021/jacs.6b04778

    Article  CAS  Google Scholar 

  9. Oshikiri T, Ueno K, Misawa H (2016) Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew Chem (International Edition) 55(12):3942–3946. https://doi.org/10.1002/anie.201511189

    Article  CAS  Google Scholar 

  10. Reynolds JC, Devins SI (2011) FeMoCo central carbon atom. Science 22–1958(November):99. https://doi.org/10.5061/dryad.6m0f6870

    Article  Google Scholar 

  11. Service RF (2014) New recipe produces ammonia from air, water, and sunlight. Science 345(6197):610. https://doi.org/10.1126/science.345.6197.610

    Article  CAS  Google Scholar 

  12. Spatzal T, Aksoyoglu M, Zhang L, Andrade Susana LA, Schleicher E, Weber S, Rees DC, Einsle O (2011) Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334(6058):940. https://doi.org/10.1126/science.1214025

    Article  CAS  Google Scholar 

  13. Zheng YF, Liu HZ, Liu ZJ, Li XN (2009) In situ X-ray diffraction study of reduction processes of Fe3O4- and Fe1-XO-based ammonia-synthesis catalysts. J Solid State Chem 182(9):2385–2391. https://doi.org/10.1016/j.jssc.2009.06.030

    Article  CAS  Google Scholar 

  14. Ozaki A, Taylor H (2006) Kinetics and mechanism of the ammonia synthesis. Proc R Soc London. Ser A Math Phys Sci 258(1292):47–62. https://doi.org/10.1098/rspa.1960.0174

  15. Czekajło Ł, Lendzion-Bieluń Z (2017) Wustite based iron-cobalt catalyst for ammonia synthesis. Catal Today 286:114–117. https://doi.org/10.1016/j.cattod.2016.11.013

    Article  CAS  Google Scholar 

  16. Engvall K, Holmlid L, Kotarba A, Pettersson JBC, Menon PG, Skaugset P (1996) Potassium promoter in industrial ammonia synthesis catalyst: studies by surface ionization. Appl Catal A 134(2):239–246. https://doi.org/10.1016/0926-860X(95)00206-5

    Article  CAS  Google Scholar 

  17. Han W, Huang S, Cheng T, Tang H, Li Y, Liu H (2015) Promotion of Nb2O5 on the wustite-based iron catalyst for ammonia synthesis. Appl Surf Sci 353:17–23. https://doi.org/10.1016/j.apsusc.2015.06.049

    Article  CAS  Google Scholar 

  18. Karolewska M, Truszkiewicz E, Wściseł M, Mierzwa B, Kȩpiński L, Raróg-Pilecka W (2013) Ammonia synthesis over a Ba and Ce-promoted carbon-supported cobalt catalyst. Effect of the cerium addition and preparation procedure. J Catal 303:130–134. https://doi.org/10.1016/j.jcat.2013.03.005

    Article  CAS  Google Scholar 

  19. Lin B, Liu Y, Heng L, Ni J, Lin J, Jiang L (2018) Effect of barium and potassium promoter on Co/CeO2 catalysts in ammonia synthesis. J Rare Earths 36(7):703–707. https://doi.org/10.1016/j.jre.2018.01.017

    Article  CAS  Google Scholar 

  20. Tarka A, Zybert M, Kindler Z, Szmurło J, Mierzwa B, Raróg-Pilecka W (2017) Effect of precipitating agent on the properties of cobalt catalysts promoted with cerium and barium for NH3 synthesis obtained by co-precipitation. Appl Catal A 532:19–25. https://doi.org/10.1016/j.apcata.2016.11.030

    Article  CAS  Google Scholar 

  21. Raróg-Pilecka W, Karolewska M, Truszkiewicz E, Iwanek E, Mierzwa B (2011) Cobalt catalyst doped with cerium and barium obtained by Co-precipitation method for ammonia synthesis process. Catal Lett 141(5):678–684. https://doi.org/10.1007/s10562-011-0564-8

    Article  CAS  Google Scholar 

  22. Raróg-Pilecka W, Miśkiewicz E, Kowalczyk Z (2008) Activated carbon as a template for creating catalyst precursors. unsupported cobalt catalyst for ammonia synthesis. Catal Commun 9(5):870–873. https://doi.org/10.1016/j.catcom.2007.09.014

    Article  CAS  Google Scholar 

  23. Moszyński D, Jedrzejewski R, Ziebro J, Arabczyk W (2010) Surface and catalytic properties of potassium-modified cobalt molybdenum catalysts for ammonia synthesis. Appl Surf Sci 256(17):5581–5584. https://doi.org/10.1016/j.apsusc.2009.12.150

    Article  CAS  Google Scholar 

  24. Lin B, Qi Y, Wei K, Lin J (2014) Effect of pretreatment on ceria-supported cobalt catalyst for ammonia synthesis. RSC Adv 4(72):38093–38102. https://doi.org/10.1039/c4ra06175f

    Article  CAS  Google Scholar 

  25. Kojima R, Aika KI (2001) Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization. Appl Catal A 215(1–2):149–160. https://doi.org/10.1016/S0926-860X(01)00529-4

    Article  CAS  Google Scholar 

  26. Clausen BS, Bahn S, Dahl S, Logadottir A, Nørskov JK, Jacobsen CJH (2002) Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J Am Chem Soc 123(34):8404–8405. https://doi.org/10.1021/ja010963d

    Article  CAS  Google Scholar 

  27. Mittasch A, Frankenburg W (1950) Early studies of multicomponent catalysts. Adv Catal 2(C):81–104. https://doi.org/10.1016/S0360-0564(08)60375-2

    Google Scholar 

  28. Kojima R, Aika K (2001a) Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Part 2. Kinetic study. Appl Catal A General 218:121–28. http://ac.els-cdn.com/S0926860X01006263/1-s2.0-S0926860X01006263-main.pdf?_tid=a07c1d30-2eab-11e7-a3b3-00000aacb35d&acdnat=1493670212_a16b7a35460416536dd1217446faa176

  29. Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS, Bligaard T, Nørskov JK (2014) Exploring the limits: a low-pressure, low-temperature Haber-Bosch process. Chem Phys Lett 598:108–112. https://doi.org/10.1016/j.cplett.2014.03.003

    Article  CAS  Google Scholar 

  30. Xue X, Chen R, Yan C, Zhao P, Hu Y, Zhang W, Yang S, Jin Z (2018) Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: advances, challenges and perspectives. Nano Res 12(1). https://doi.org/10.1007/s12274-018-2268-5

    Article  CAS  Google Scholar 

  31. Wang K, Smith D, Zheng Y (2018) Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective. Carbon Resour Convers 1(1):2–31. https://doi.org/10.1016/j.crcon.2018.06.004

    Article  Google Scholar 

  32. Bourgeois S, Diakite D, Perdereau M (1988) A study of TiO2 powders as a support for the photochemical synthesis of ammonia. React Solids 6(1):95–104. https://doi.org/10.1016/0168-7336(88)80048-2

    Article  CAS  Google Scholar 

  33. Schrauzer GN, Guth TD (2016) Cheminform abstract: Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Chemischer Informationsdienst 9(6):7189–7193. https://doi.org/10.1002/chin.197806026

    Article  Google Scholar 

  34. Zhao Y, Zhao Y, Waterhouse Geoffrey IN, Zheng L, Cao X, Teng F, Li Zhu W, Tung CH, O’Hare D, Zhang T (2017) Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv Mater 29(42):1–10. https://doi.org/10.1002/adma.201703828

    Article  CAS  Google Scholar 

  35. Wang S, Hai X, Ding X, Chang K, Xiang Y, Meng X, Yang Z, Chen H, Ye J (2017) Light-switchable oxygen vacancies in ultrafine Bi5O7 Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv Mater 29(31):1–7. https://doi.org/10.1002/adma.201701774

    Article  CAS  Google Scholar 

  36. Maryin C, Martin I, Rives V, Palmisano L, Schiavello M (1992) Structural and surface characterization of the polycrystalline system CrxO/-TiO2 employed for photoreduction of dinitrogen and photodegradation of phenol surface area determination and porosity x-ray diffractometry apparatuses and procedures for the Ln. J Catal 134:434–444

    Article  Google Scholar 

  37. Hao Y, Dong X, Zhai S, Ma H, Wang X, Zhang X (2016) Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem Eur J 22(52):18722–18728. https://doi.org/10.1002/chem.201604510

    Article  CAS  Google Scholar 

  38. Hu S, Xiaoyu Q, Bai J, Li P, Li Q, Wang F, Song L (2017) Effect of Cu(I)-N active sites on the N2 photofixation ability over flowerlike copper-doped g-C3N4 prepared via a novel molten salt-assisted microwave process: the experimental and density functional theory simulation analysis. ACS Sustain Chem Eng 5(8):6863–6872. https://doi.org/10.1021/acssuschemeng.7b01089

    Article  CAS  Google Scholar 

  39. Ileperuma OA, Tennakone K, Dissanayake WDDP (1990) Photocatalytic behavior of metal doped titanium-dioxide—studies on the photochemical-synthesis of ammonia on Mg/TiO2 catalyst systems. Appl Catal 62:L1–L5

    Article  CAS  Google Scholar 

  40. Palmisano L, Augugliaro V, Sclafani A, Schiavello M (1988) Activity of chromiumion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J Phys Chem 92:6710–6713

    Article  CAS  Google Scholar 

  41. Soria J, Conesa JC, Augugliaro V, Palmisano L, Schiavello M, Sclafani A (1991) Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J Phys Chem 95(1):274–282. https://doi.org/10.1021/j100154a052

    Article  CAS  Google Scholar 

  42. Tian YH, Hu S, Sheng X, Duan Y, Jakowski J, Sumpter BG, Huang J (2018) Nontransition- metal catalytic system for N2 reduction to NH3: a density functional theory study of Al-doped graphene. J Phys Chem Lett 9:570–576

    Article  CAS  Google Scholar 

  43. Lu Y, Yang Y, Zhang T, Ge Z, Chang H, Xiao P, Xie Y et al (2016) Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 10(11):10507–10515. https://doi.org/10.1021/acsnano.6b06472

    Article  CAS  Google Scholar 

  44. Rao NN, Dube S, Manjubala, Natarajan P (1994) Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts. Appl Catal B 5(1–2):33–42. https://doi.org/10.1016/0926-3373(94)00042-5

    Article  CAS  Google Scholar 

  45. Yang Y, Zhang T, Ge Z, Yanhong L, Chang H, Xiao P, Zhao R, Ma Y, Chen Y (2017) Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon 124:72–78. https://doi.org/10.1016/j.carbon.2017.07.014

    Article  CAS  Google Scholar 

  46. Guo X, Zhu Y, Ma T (2017) Lowering reaction temperature: electrochemical ammonia synthesis by coupling various electrolytes and catalysts. J Energy Chem 26(6):1107–1116. https://doi.org/10.1016/j.jechem.2017.09.012

    Article  Google Scholar 

  47. Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK (2012) A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 14(3):1235–1245. https://doi.org/10.1039/c1cp22271f

    Article  CAS  Google Scholar 

  48. Glerup M, Nielsen OF, Poulsen FW (2001) The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by raman spectroscopy and defect chemistry modeling. J Solid State Chem 160(1):25–32. https://doi.org/10.1006/jssc.2000.9142

    Article  CAS  Google Scholar 

  49. Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrogen Energy 38(34):14576–14594. https://doi.org/10.1016/j.ijhydene.2013.09.054

    Article  CAS  Google Scholar 

  50. Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125(2):334–335. https://doi.org/10.1021/ja028891t

    Article  CAS  Google Scholar 

  51. Garagounis I, Kyriakou V, Stoukides M, Vasileiou E, Vourros A (2016) Progress in the electrochemical synthesis of ammonia. Catal Today 286:2–13. https://doi.org/10.1016/j.cattod.2016.06.014

    Article  CAS  Google Scholar 

  52. Amar IA, Lan R, Petit Christophe TG, Tao S (2011) Solid-state electrochemical synthesis of ammonia: a review. J Solid State Electrochem 15(9):1845–1860. https://doi.org/10.1007/s10008-011-1376-x

    Article  CAS  Google Scholar 

  53. Xu G, Liu R (2009) Sm1.5Sr0.5MO4 (M=Ni Co, Fe) cathode catalysts for ammonia synthesis at atmospheric pressure and low temperature. Chin J Chem 4(20863007):677–680

    Article  Google Scholar 

  54. Xu G, Liu R, Wang J (2009) Electrochemical synthesis of ammonia using a cell with a nafion membrane and SmFe0.7Cu0.3-x NixO3 (x = 0-0.3) cathode at atmospheric pressure and lower temperature. Sci China, Ser B: Chem 52(8):1171–1175. https://doi.org/10.1007/s11426-009-0135-7

    Article  CAS  Google Scholar 

  55. Tsuneto A, Kudo A, Sakata T (1994) Lithium-mediated electrochemical reduction of high pressure N2 to NH3. J Electroanal Chem 367(1–2):183–188. https://doi.org/10.1016/0022-0728(93)03025-K

    Article  CAS  Google Scholar 

  56. Bao D, Zhang Q, Meng FL, Zhong HX, Shi MM, Zhang Y, Yan JM, Jiang Q, Zhang XB (2017) Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater 29(3). https://doi.org/10.1002/adma.201604799

    Article  Google Scholar 

  57. Spencer ND, Schoonmaker RC, Somorjai GA (1982) Iron single crystals as ammonia synthesis catalysts: effect of surface structure on catalyst activity. J Catal 74(1):129–135. https://doi.org/10.1016/0021-9517(82)90016-1

    Article  CAS  Google Scholar 

  58. Zhao J, Chen Z (2017) Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 139(36):12480–12487. https://doi.org/10.1021/jacs.7b05213

    Article  CAS  Google Scholar 

  59. Abghoui Y, Garden AL, Howalt JG, Vegge T, Skúlason E (2016) Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: a DFT guide for experiments. ACS Catal 6(2):635–646. https://doi.org/10.1021/acscatal.5b01918

    Article  CAS  Google Scholar 

  60. Abghoui Y, Skúlason E (2017) Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal Today 286:69–77. https://doi.org/10.1016/j.cattod.2016.11.047

    Article  CAS  Google Scholar 

  61. Zhang X, Kong RM, Huitong D, Xia L, Fengli Q (2018) Highly efficient electrochemical ammonia synthesis: via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem Commun 54(42):5323–5325. https://doi.org/10.1039/c8cc00459e

    Article  CAS  Google Scholar 

  62. Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257(17–18):2551–2564. https://doi.org/10.1016/j.ccr.2013.02.010

    Article  CAS  Google Scholar 

  63. Gilbertson JD, Szymczak NK, Tyler DR (2005) Reduction of N2 to ammonia and hydrazine utilizing H2 as the reductant. J Am Chem Soc 127(29):10184–10185. https://doi.org/10.1021/ja053030g

    Article  CAS  Google Scholar 

  64. Leigh GJ, Jimenez-Tenorio M (1991) Exchange of dinitrogen between iron and molybdenum centers and the reduction of dinitrogen bound to iron: implications for the chemistry of nitrogenases. J Am Chem Soc 113(15):5862–5863. https://doi.org/10.1021/ja00015a050

    Article  CAS  Google Scholar 

  65. Sellmann D, Hennige A (1997) Direct Proof of Trans-Diazene in solution by trapping and isolation of the trapping products. Angew Chem, Int Ed Engl 36(3):276–278

    Article  CAS  Google Scholar 

  66. Yandulov DV, Schrock RR (2003) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301:76–78

    Article  CAS  Google Scholar 

  67. Yandulov DV, Schrock RR (2014) Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301(5629):76–78

    Article  CAS  Google Scholar 

  68. Tuczek F, Horn KH, Lehnert N (2003) Vibrational spectroscopic properties of molybdenum and tungsten N2 and N2Hx complexes with depe coligands: comparison to dppe systems and influence of H-bridges. Coord Chem Rev 245(1–2):107–120. https://doi.org/10.1016/S0010-8545(03)00064-X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Coşkuner Filiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coşkuner Filiz, B., Kantürk Figen, A. (2020). Earth Abundant Catalysis for Ammonia Synthesis. In: Inamuddin, Boddula, R., Asiri, A. (eds) Sustainable Ammonia Production. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-35106-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35106-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35105-2

  • Online ISBN: 978-3-030-35106-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics