Skip to main content

Experimental Methods

  • Chapter
  • First Online:
Fracture Mechanics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 263))

  • 2047 Accesses

Abstract

Experimental methods have extensively been used in fracture mechanics problems. A number of nondestructive testing methods for the detection, location and sizing of defects have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Irwin GR (1947) Analysis of stresses and strains near the end of a crack traversing a plate. ASME J Appl Mech 24:361–364

    Google Scholar 

  2. Dally JW, Sanford RJ (1988) Strain gage methods for measuring the opening mode stress intensity factor, KI. Exp Mech 28:381–388

    Article  Google Scholar 

  3. Berger JR, Dally JW (1988) An overdeterministic approach for measuring KI using strain gages. Exp Mech 28:142–145

    Article  Google Scholar 

  4. Dally JW, Berger JR (1993) The role of electrical resistance strain gage in fracture research. In: Epstein JS (ed) Experimental techniques in fracture. VCH Publishers Inc, pp 1–39

    Google Scholar 

  5. Dally JW, Barker DB (1987) Dynamic measurements of initiation toughness at high loading rates. Exp Mech 27:298–303

    Article  Google Scholar 

  6. Sanford RJ, Dally JW, Berger JR (1990) An improved strain gauge method for measuring KD for a propagating crack. J Strain Anal Eng Des 25:177–193

    Article  Google Scholar 

  7. Irwin GR (1958) Discussion of the paper: “The dynamic stress distribution surrounding a running crack – a photoelastic analysis”. Proc Soc Exp Stress Anal 16:93–96

    Google Scholar 

  8. Bradley WB, Kobayashi AS (1970) An investigation of propagating cracks by dynamic photoelasticity. Exp Mech 10:106–113

    Article  Google Scholar 

  9. Schroedl MA, Smith CW (1973) Local stress near deep surface flaws under cylindrical bending fields. ASTM STP 536:45–63

    Google Scholar 

  10. Etheridge JM, Dally JW (1977) A critical review of methods for determining stress intensity factors from isochromatic fringes. Exp Mech 17:248–254

    Article  Google Scholar 

  11. Smith CW (1973) Use of there-dimensional photoelasticity in fracture mechanics. Exp Mech 13:239–544

    Google Scholar 

  12. Schroedl MA, McGowan JJ, Smith CW (1974) Determination of stress-intensity factors from photoelastic data with application to surface flaw problems. Exp Mech 14:292–399

    Article  Google Scholar 

  13. Etheridge JM, Dally JW (1978) A three-parameter method for determining stress intensity factors from isochromatic fringe patterns. J Strain Anal 13:91–94

    Article  Google Scholar 

  14. Etheridge JM, Dally JW, Kobayashi T (1978) A new method of determining stress intensity factor K from isochromatic fringe loops. Eng Fract Mech 10:81–93

    Article  Google Scholar 

  15. Smith CW (1973) Use of three-dimensional photoelasticity in fracture mechanics. Exp Mech 13:539–544

    Google Scholar 

  16. Smith CW (1980) Stress intensity and flaw-shape variation in surface flaws. Exp Mech 20:390–396

    Article  Google Scholar 

  17. Gdoutos EE (1985) Photoelastic study of crack problems. In: Paipetis SA, Holister G (eds) Photoelasticity in engineering practice. Applied Science. Elsevier, pp 181–204

    Google Scholar 

  18. Epstein JS (ed) (1993) Experimental techniques in fracture. VCH Publishers, Inc

    Google Scholar 

  19. Theocaris PS (1991) Elastic stress intensity factors evaluated by caustics. In: Sih GC (ed) Mechanics of fracture. Experimental evaluation of stress concentration and intensity factors, vol 7. Martinus Nijhoff, Dordrecth, The Netherlands, pp 189–252

    Google Scholar 

  20. Kalthoff JF (1987) Shadow optical method of caustics. In: Kobayashi AS (ed) Handbook on experimental mechanics. Prentice Hall, Englewood Cliffs NJ, USA, pp 430–500

    Google Scholar 

  21. Theocaris PS, Gdoutos EE (1979) Matrix theory of photoelasticity. Springer

    Google Scholar 

  22. Levi N, Marcal PV, Rice JR (1971) Progress in three-dimensional elastic-plastic stress analysis for fracture mechanics. Nucl Eng Des 17:64–75

    Article  Google Scholar 

  23. Rosakis AJ, Ravi-Chandar K (1986) On crack tip stress state—an experimental evaluation of three-dimensional effects. Int J Solids Struct 2:121–134

    Article  Google Scholar 

  24. Konsta-Gdoutos M, Gdoutos EE, Meletis EI (1992) The state of stress at a crack tip studied by caustics. In: Proceeding of the VII international congress on experimental mechanics, pp 797–801

    Google Scholar 

  25. Konsta-Gdoutos M, Gdoutos EE (1992) Some remarks on caustics in mode-I stress intensity factor evaluation. Theor Appl Fract Mech 17:47–60

    Article  Google Scholar 

  26. Konsta-Gdoutos M, Gdoutos EE (1992) Limits of applicability of the method of caustics in crack problems. Eng Fract Mech 42:251–263

    Article  Google Scholar 

  27. Gdoutos EE (2016) The optical method of caustics. Opt Lasers Eng 79:68–77

    Article  Google Scholar 

  28. Gdoutos EE (1990) Fracture mechanics criteria and applications. Kluwer Academic Publishers, pp i–xii, 1–314

    Google Scholar 

  29. Creager M, Paris P (1967) Elastic field equation for blunt cracks with reference to stress corrosion cracking. Int J Fract Mech 3:247–252

    Article  Google Scholar 

  30. Liechti KM (1993) On the use of classical interferometry techniques in fracture mechanics. In: Epstein JS (ed) Experimental techniques in fracture. VCH, pp 95–124

    Google Scholar 

  31. Sharpe WN Jr (1993) Crack-tip opening displacement measurement techniques. In: Epstein JS (ed) Experimental techniques in fracture. VCH, pp 219–252

    Google Scholar 

  32. Dudderar TD, Gorman HJ (1973) The determination of mode I factors by holographic interferometry. Exp Mech 13:145–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel E. Gdoutos .

Examples

Examples

Example 15.1

A strain gage of length 2 mm is placed at a distance 8 mm from the crack tip. The reading of the gage is εg = 600 με. Determine the angles α and θ and the stress intensity factor KI.

$$ E = 207\,\text{GPa},\nu = 0.3. $$

Solution

We have from Eqs. (15.4) and (15.5)

$$ { \cos }\,2\alpha = - k = - \frac{1 - \nu }{1 + \nu } = - \frac{1 - 0.3}{1 + 0.3} = - 0.54 $$
(1)

and

$$ \alpha = 61.29^{ \circ } $$
(2)

Then we obtain from Eq. (15.5)

$$ \text{tan}\frac{\theta }{2} = - { \cot }\,2\upalpha = - { \cot }\,\left( {2 \times 61.29^{ \circ } } \right) = 0.64 $$
(3)

and

$$ \theta = 65.16^{ \circ } $$
(4)

With θ = 65.16° and α = 61.29°, we obtain from Eq. (15.6)

$$ \begin{aligned} 2\mu \varepsilon_{{x^{{\prime }} y^{{\prime }} }} & = \frac{{K_{\text{I}} }}{{\sqrt {2\pi r} }}(k\,{ \cos }\frac{\theta }{2} - \frac{1}{2}{ \sin }\,\theta \,{ \sin }\frac{3\theta }{2}{ \cos }\,2\alpha + \frac{1}{2}{ \sin }\,\theta \,{ \cos }\frac{3\theta }{2}{ \sin }\,2\alpha ) \\ & = \frac{{K_{\text{I}} }}{{\sqrt {2\pi r} }}(\left( {0.54} \right){ \cos }\frac{{65.16^{ \circ } }}{2} - \frac{1}{2}{ \sin }\,65.16^{ \circ } { \sin }(\frac{{3 \times 65.16^{ \circ } }}{2}){ \cos }\left( {2 \times 61.29^{ \circ } } \right) \\ &\quad + \frac{1}{2}{ \sin }\,65.16^{ \circ } { \cos } \left( {\frac{{3 \times 65.16^{ \circ } }}{2}} \right){ \sin }\left( {2 \times 61.29^{ \circ } } \right)) \\ & = \frac{{0.65K_{\text{I}} }}{{\sqrt {2\pi r} }} \\ \end{aligned} $$
(5)

Then, we obtain from Eq. (15.5) with 2μ = E/(1+ ν), E = 207 GPa, ν = 0.3, r = 0.008 m

$$\begin{aligned} K_{\text{I}} &= 2.97E\sqrt r \varepsilon_{{x^{{\prime }} y^{{\prime }} }} = 2.97\,E\sqrt r \varepsilon_{g} \\ &= 2.97 \times (207 \times 10^{9} )\sqrt {0.008} \,(600 \times 10^{ - 6} ) = 33\,\text{MPa}\,\sqrt {\text{m}} \end{aligned}$$
(6)

Equations (2) and (4) give the angles α and θ and Eq. (6) gives the stress intensity factor KI.

Example 15.2

Determine the distance between the center of a gage and the true strain location for the following cases:

  1. (a)

    A strain gage of length 1 mm placed at a distance 4 mm from the crack tip.

  2. (b)

    A strain gage of length 2 mm placed at a distance 4 mm from the crack tip.

  3. (c)

    A strain gage of length 2 mm placed at a distance 8 mm from the crack tip.

Solution

We have from Eq. (15.16)

  1. (a)
    $$ \begin{aligned} & \frac{\varDelta r}{{r_{c} }} = \frac{1}{2}\left\{ 1 \, {-}\left[ {1{-}\left( {\frac{L}{{2r_{c} }}} \right)^{2} } \right]^{1/2} \right\} = \frac{1}{2}\left\{ 1 \, {-} \, \left[1 \, {-}\left( { \, \frac{1}{2 \times 4}} \right)^{2} \right]^{1/2} \right\} = 0.0039 \\ & \varDelta r = 0.0039\,\times \,4 {\text{mm}} = 0.0157\,{\text{mm}} \\ \end{aligned} $$
    (1)
  2. (b)
    $$ \begin{aligned} & \frac{\varDelta r}{{r_{c} }} = \frac{1}{2}\left\{ 1 \, {-} \, \left[1{-}\left( {\frac{L}{{2r_{c} }}} \right)^{2} \right]^{1/2} \right\} = \frac{1}{2} \left\{ 1{-}\left[1 \, {-}\left( {\frac{2}{2 \times 4}} \right)^{2} \right]^{1/2} \right\} = 0.016 \\ & \varDelta r = 0.016\,\times\,4\,{\text{mm}} = 0.064\,{\text{mm}} \\ \end{aligned} $$
    (2)
  3. (c)
    $$ \begin{aligned} & \frac{\varDelta r}{{r_{c} }} = \frac{1}{2}\left\{ 1{-}\left[1{-}\left( {\frac{L}{{2r_{c} }}} \right)^{2} \right]^{1/2} \right\} = \frac{1}{2}\left\{ 1{-}\left[1{-}\left( {\frac{2}{2 \times 8}} \right)^{2} \right]^{1/2} \right\} = 0.0039 \\ & \varDelta r = 0.0039\,\times\,8\,{\text{mm}} = 0.0314\,{\text{mm}} \\ \end{aligned} $$
    (3)

Equations (1), (2) and (3) give the distance between the center of a gage and the true strain location for the above three cases.

Example 15.3

For a material with Poisson’s ratio ν = 1/3 under mode-I and mode-II loading show that by placing the electrical resistance strain gages at positions α = θ = +60° and 60° the sum of the strains along these positions is independent of KII and the difference of the stresses is independent of KI.

Solution

From Eq. (15.17) we first observe that when Eq. (15.5) is satisfied, then the coefficients of the terms A1, B0 and D1 vanish. Introducing the values of α = θ =+60° into Eq. (15.17), we obtain

$$ {\text{E}}{\upvarepsilon_{{\text{x}}^{{\prime }} {\text{y}}^{{\prime }} }}^{ + } = \frac{\sqrt 3 }{2}A_{0 } \,r^{ - 1/2} - 2{B}_{1} r + \frac{1}{2}C_{0 } r^{ - 1/2} + C_{1 } r^{1/2} $$
(1)

Similarly for α = θ = 60°, we obtain

$$ {\text{E}}{\upvarepsilon_{{\text{x}}^{{\prime }} {\text{y}}^{{\prime }} }}^{ - } = \frac{\sqrt 3 }{2}A_{0 } r^{ - 1/2} - 2{B}_{1} r - \frac{1}{2}C_{0 } r^{ - 1/2} - C_{1 } r^{1/2} $$
(2)

By adding Eqs. (1) and (2) we obtain

$$ {\text{E}}({\upvarepsilon_{\text{x}^{\prime } \text{y}^{\prime}}}^{ + } +{\upvarepsilon_{{\text{x}}^{{\prime }} {\text{y}}^{{\prime }} }}^{ - } ) = \sqrt {3 } A_{0 } r^{ - 1/2} - 4{B}_{1} r $$
(3)

and, by subtracting Eqs. (1) and (2) we obtain

$$ {\text{E}}({\upvarepsilon_{{{\text{x}}^{{\prime }} {\text{y}}^{{\prime }} }}}^{ + } - {\upvarepsilon_{{{\text{x}}^{{\prime }} {\text{y}}^{{\prime }} }}}^{ - } ) = - C_{0 } r^{ - 1/2} + 2C_{1 } r^{1/2} $$
(4)

A0 and C0 are related to the stress intensity factors KI and KII by

$$ K_{\text{I}} = \sqrt {2\pi } \,A_{0} , K_{\text{II}} = \sqrt {2\pi }\, C_{0} $$
(5)

From Eq. (3) we observe that the sum (εx′y′+ + εx′y′) measured at the same distance r from the crack tip along the radial lines +60° and −60° is independent of C0, and therefore, of the shearing mode stress intensity factor KII.

From Eq. (4) we observe that the difference (εx′y′+ − εx′y′) measured at the same distance r from the crack tip along the radial lines +60° and 60° is independent of A0, and therefore, of the opening mode stress intensity factor KI.

Example 15.4

The following data were obtained from the isochromatic fringe pattern of a large plate of thickness d = 4 mm with an edge crack of length a = 10 cm subjected to opening-mode loading:

$$ \begin{aligned} N_{1} = 3, r_{m1} = 0.6\,{\text{cm}},\theta_{m1} = 76^{ \circ } \hfill \\ N_{2} = 5, r_{m2} = 0.2\,{\text{cm}},\theta_{m2} = 80^{ \circ } \hfill \\ \end{aligned} $$

where N1, N2 are the isochromatic fringe loop orders, and, rm1, θm1 and rm2, θm2 are the polar coordinates of the farthest points of the loops 1, 2 at the crack tip.

The photoelastic constant of the material of the plate is fc = 20 kN/m.

Determine the stress intensity factor KI using the Irwin and the Bradley and Kobayashi methods.

Solution

The stress intensity factor KI is calculated according to the Irwin method for point 1 from Eq. (15.25) as

$$ K_{\text{I}} = \frac{{Nf_{c} \sqrt {2\pi r_{m} } }}{{d\,{ \sin }\,\theta_{m} }}\left[ {1 + \left( {\frac{2}{{3\,{ \tan }\,\theta_{m} }}} \right)^{2} } \right]^{ - 1/2} \left( {1 + \frac{{2\,{ \tan }(3\theta_{m} /2)}}{{3\,{ \tan }\,\theta_{m} }}} \right) $$
(1)

Substituting the values of N1 = 3, rm1 = 0.6 cm, θm1 = 76°, d = 4 mm and fc = 20 kN/m for point 1 in Eq. (1), we obtain

$$ K_{\text{I}} = \frac{{3 \times 20 \times 10^{3} \sqrt {2\pi \times 6 \times 10^{ - 3} } }}{{4 \times 10^{ - 3} { \sin }\,76^{\circ} }}\left[ {1 + \left( {\frac{2}{{3\,{ \tan }\,76^{\circ} }}} \right)^{2} } \right]^{ - 1/2} \left( {1 + \frac{{2\,{ \tan }114^{\circ} }}{{3\,{ \tan }\,76^{\circ} }}} \right) = 1.87\,{\text{MPa}} \sqrt {\text{m}} $$
(2)

Substituting the values of N2 = 5, rm2 = 0.2 cm, θm2 = 80°, d = 4 mm and fc = 20 kN/m for point 2 in Eq. (1), we obtain

$$ K_{\text{I}} = \frac{{5 \times 20 \times 10^{3} \sqrt {2\pi \times 2 \times 10^{ - 3} } }}{{4 \times 10^{ - 3} { \sin }\,80^{\circ} }}\left[ {1 + \left( {\frac{2}{{3\,{ \tan }\,80^{\circ} }}} \right)^{2} } \right]^{ - 1/2} \left( {1 + \frac{{2\,{ \tan }\,120^{\circ} }}{{3\,{ \tan }\,80^{\circ} }}} \right) = 2.26\,{\text{MPa}} \sqrt {\text{m}} $$
(3)

For the Bradley and Kobayashi method, KI is determined from (Eq. (15.29)) :

$$ K_{\text{I}} = \frac{{f_{c} }}{d}\sqrt {2\pi } \frac{{\sqrt {r_{1} r_{2} } (N_{2} - N_{1)} }}{{f_{2} \sqrt {r_{1} } + f_{1} \sqrt {r_{2} } }} $$
(4)

with

$$ f = [{ \sin }^{2} \theta + 2\delta \sqrt {2r/a}\,{ \sin }\,\theta \,{ \sin }(3\theta /2) + 2r\delta^{2} /a]^{1/2} $$
(5)

We have for the value of f1,2 for the points 1 and 2 (putting δ = 1)

$$ f_{1} = \left[ {{ \sin }^{2}\,76^{ \circ } + \, 2\left( {2 \times 0.6/10} \right)^{0.5} { \sin }\,76^{ \circ } { \sin }\,114^{ \circ } + 2 \times 0.6/10} \right]^{0.5} = 1.29 $$
(6)
$$ f_{2} = \left[ {{ \sin }^{2}\,80^{ \circ } + 2\left( {2 \times 0.2/10} \right)^{0.5} { \sin }\,80^{ \circ } { \sin }\,120^{0} + 2 \times 0.2/10} \right]^{0.5} = 1.16 $$
(7)

KI is determined from Eq. (4) as

$$ K_{\text{I}} = \frac{{20 \times 10^{3} \times (2\pi )^{0.5} (\left( {2 \times 10^{ - 3} } \right) \times (6 \times 10^{ - 3} ))^{0.5 } \left( {5 - 3} \right)}}{{\left( {4 \times 10^{ - 3} } \right)((1.16 \times (6 \times 10^{ - 3} )^{0.5} - 1.29 \times \left( {2 \times 10^{ - 3} )^{0.5} } \right)}} = \, 2.70 \times 10^{6} \,{\text{MPa}}\,\sqrt {\text{m}} $$
(8)

Example 15.5

For mixed-mode loading, consider the photoelastic data obtained along the lines θ = π and θ = π/2. Develop a method for the determination of stress intensity factors KI and KII (it is assumed that the photoelastic fringes intersect the above two lines).

Solution

We obtain from Eq. (15.21) with θ = π

$$ \tau_{ \text{max} }^{2} = \frac{1}{2\pi r}{K}_{\text{II}}^{2} + \frac{{\sigma_{0x} }}{{\sqrt {2\pi r} }}K_{\text{II}} + \frac{{\sigma_{0x}^{2} }}{4} $$
(1)

and

$$ \frac{{Nf_{\sigma } }}{d} = 2\uptau_{ \text{max} } = \pm \left( {\frac{{2K_{II} }}{{\sqrt {2\pi r} }} + \sigma_{ox} } \right) $$
(2)

Consider two fringes N1 and N2 (N1> N2) which intersect the upper edge of the crack (θ = π) at distances r1 and r2 from the crack tip. The isochromatic fringes intersect the line θ = π when KII < 0, and intersect the line θ = −π when KII > 0.

Applying Eq. (2) at positions r1 and r2 and taking the negative sign in Eq. (2), we obtain

$$ \frac{{N_{1} f_{\sigma } }}{d} = - \left( {\frac{{2K_{\text{II}} }}{{\sqrt {2\pi r_{1} } }} + \sigma_{ox} } \right) $$
(3)
$$ \frac{{N_{2} f_{\sigma } }}{d} = - \left( {\frac{{2K_{\text{II}} }}{{\sqrt {2\pi r_{2} } }} + \sigma_{ox} } \right) $$
(4)

From Eqs. (3) and (4), we obtain

$$ K_{\text{II}} = \frac{{f_{\sigma } }}{d}\sqrt {\frac{\pi }{2}} \left( {\frac{{\sqrt {r_{1} r_{2} } }}{{\sqrt {r_{1} } - \sqrt {r_{2} } }}} \right)(N_{1} {-} \, N_{2} ) $$
(5)
$$ \sigma_{ox} = - \frac{{N_{1} f_{\sigma } }}{d} - \frac{{2K_{\text{II}} }}{{\sqrt {2\pi r_{1} } }} $$
(6)

Equations (5) and (6) give the stress intensity factor KII and the constant stress \( \sigma_{ox} . \)

We obtain from Eq. (15.21) with θ = π/2 and r = r3

$$ \left( {\frac{{N_{3} f_{\sigma } }}{d}} \right)^{2} = \frac{1}{{2\pi r_{3} }}(K_{\text{I}}^{2} + K_{\text{II}}^{2} ) + \frac{{\sigma_{0x} }}{{\sqrt {\pi r_{3} } }} \left( {K_{\text{I}} + K_{\text{II}} } \right) + \sigma_{0x}^{2} $$
(7)

By solving the above quadratic equation the value of stress intensity factor KI is obtained (using the values of KII and \( \sigma_{ox} \) determined from Eqs. (5) and (6)).

Example 15.6

Isopachic fringe patterns obtained from interferometric methods represent the contours of the out-of-plane displacement for conditions of generalized plane stress or the contours of the sum of the principal stresses. Consider only two terms of the strain field around the crack tip (Eq. (15.1)) and select data along the line θ = 0. Find an equation for the stress intensity factor KI from the isopachic fringe orders N1 and N2 at positions r1 and r2 along the crack axis. This method for determining KI was developed by Dudderar and Gorman [32].

Solution

The stress-optical law for isopachic patterns is given by

$$ \sigma_{xx} + \sigma_{yy} = \frac{{Nf_{p} }}{d} $$
(1)

where N is the fringe order, fp is the optical constant and d is the thickness of the plate.

From Eq. (1) in combination with the stress–strain equation under condition of plane stress (σz = 0), we obtain for θ = 0

$$ \frac{{\sigma_{xx} + \sigma_{yy} }}{2} = A_{0} r^{ - 1/2} + B_{0} = \frac{{Nf_{p} }}{2d} $$
(2)

Applying Eq. (2) at positions r1 and r2 with fringe orders N1 and N2, respectively, we obtain

$$ A_{0} r_{1}^{ - 1/2} + B_{0} = \frac{{N_{1} f_{p} }}{2d} $$
(3)
$$ A_{0} r_{2}^{ - 1/2} + B_{0} = \frac{{N_{2} f_{p} }}{2d} $$
(4)

Subtracting Eqs. (3) and (4), we obtain

$$ A_{0} \left( {r_{1}^{ - 1/2} - r_{2}^{ - 1/2} } \right) = \frac{{\left( {N_{1} - N_{2} } \right)f_{p} }}{2d} $$
(5)

or

$$ A_{0} = \frac{{\sqrt {r_{1} r_{2} } }}{{\sqrt {r_{2} } - \sqrt {r_{1} } }}\frac{{\left( {N_{1} - N_{2} } \right)f_{p} }}{2d} $$
(6)

KI is determined as

$$ K_{\text{I}} = \sqrt {2\pi } A_{0} = \sqrt {\frac{\pi }{2}} \frac{{\sqrt {r_{1} r_{2} } }}{{\sqrt {r_{2} } - \sqrt {r_{1} } }}\frac{{\left( {N_{1} - N_{2} } \right)f_{p} }}{d} $$
(7)

Example 15.7

A PMMA (Plexiglas) plate of thickness d = 2 mm with a crack is illuminated by a divergent light emanating from a point source placed at a distance zi = 0.4 m from the plate. A caustic of transverse diameter Dt = 20 mm is formed at a screen placed at a distance z0 = 1 m behind the plate. The optical constant of PMMA is c = 108 × 10−12 m2/N.

  1. (a)

    Determine the KI stress intensity factor and the radius of the initial curve of the caustic r0.

  2. (b)

    The screen is then placed at a distance z0 = 2 m from the plate. Determine the diameter of the caustic Dt and the radius r0.

Solution

  1. (a)

    The magnification factor of the optical arrangement is

$$ m = \frac{{z_{0} + z_{i} }}{{z_{i} }} = \frac{1 + 0.4}{0.4 } = 3.50 $$
(1)

We obtain from Eq. (15.65) for the stress intensity factor KI

$$ K_{\text{I}} = \frac{0.0939}{{{\text{z}}_{0} {\text{c}}dm^{3/2} }}D_{t}^{5/2} = \frac{0.0939}{{1 \times \left( {108 \times 10^{ - 12} } \right)\left( {0.002} \right)(3.50)^{3/2} }}\,0.02^{5/2} = \, 3.76\,{\text{MPa}}\sqrt {\text{m}} $$
(2)

The radius of the initial curve r0 is obtained from Eq. (15.67) as

$$ r_{0} = 0.316\,D_{t} /m = 0.316\, \times \,20/3.5 = 1.81\,{\text{mm}} $$
(3)
  1. (b)

    When the screen is placed at a distance z0 = 2 m from the plate, the magnification factor m is

$$ m = \frac{{z_{0} + z_{i} }}{{z_{i} }} = \frac{200 + 40}{40 } = 6 $$
(4)

The diameter Dt of the caustic is given by Eq. (2) as

$$ D_{t} = \left( {\frac{{K_{I} cz_{0} dm^{3/2} }}{0.0939}} \right)^{2/5} = \left( {\frac{{\left( {3.76 \times 10^{6} } \right) \times \left( {108 \times 10^{ - 12} } \right) \times 2 \times \left( {0.002} \right) \times \left( {6^{3/2} } \right)}}{0.0939}} \right)^{2/5} = 36.5\,{\text{mm}} $$
(5)

and the radius of the initial curve r0 by

$$ r_{0} = 0.316\,D_{t} /m = 0.316\, \times \,36.5/6 = 1.92\,{\text{mm}} $$
(6)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gdoutos, E.E. (2020). Experimental Methods. In: Fracture Mechanics. Solid Mechanics and Its Applications, vol 263. Springer, Cham. https://doi.org/10.1007/978-3-030-35098-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35098-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35097-0

  • Online ISBN: 978-3-030-35098-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics