Skip to main content

Triumph and Fall of the Wet, Warm, and Never-More-Diverse Temperate Forests (Oligocene-Pliocene)

Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

Large areas of Earth’s continents were covered by temperate forests before the dramatic increase of the human population in the past two millennia. Prior to human expansion, temperate forests were more extensive in the Neogene (23–2.6 Ma) when climate at the middle latitudes was slightly warmer and more equable than at the present. These temperate forests exhibited a high diversity of plant taxa, higher than today in several geographical areas. Such high diversity in the past can be explained by two reasons. First, angiosperms originated in the Cretaceous and underwent an important phylogenetic diversification during and shortly after that period. These new plant lineages easily dispersed between North America and Eurasia, and biogeographic range expansions continued across other continents. Second, since the Eocene/Oligocene transition (c. 34 Ma), several members of tropical/subtropical lineages adapted to cooler conditions and entered the warmer temperate realm. An equable climate with abundant precipitation in widespread areas provided a suitable habitat for moisture-requiring woody plants. The higher floristic diversity in the Neogene compared to the present is best illustrated by European fossil plants and, to a lesser extent, by those in North America. The area covered by temperate forests in South America decreased consistently after the late Miocene, and the dominant woody plants of the Neogene remained only in the westernmost regions. A floristic impoverishment is not clearly documented in Australia, where there was a much higher diversity of conifers in the Oligocene-Miocene than today. Beginning some 6 million years ago, several global intervals of colder and/or drier climate reduced the habitat of those taxa that required nonfreezing temperatures and moisture, finally resulting in a large mass extirpation/extinction of thermophilous plants in western Eurasia. This turnover occurred primarily between 3.5 and 1.0 million years ago. The trend was different in eastern Eurasia where extirpation/extinction has been rather limited. In conclusion, the mid-latitudes of all the continents witnessed a triumph of the extension and diversity of temperate forests from about 34 to 3 million years ago (Oligocene-Pliocene) and, in many temperate places, these grew under wetter and warmer conditions than today.

Electronic supplementary material

A slide presentation and an explanation of each slide’s content is freely available to everyone upon request via email to one of the editors: edoardo.martinetto@unito.it, ragastal@colby.edu, tschopp.e@gmail.com*The asterisk designates terms explained in the Glossary.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-35058-1_2
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-35058-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18

References 

  • Barreda V, Palazzesi L (2007) Patagonian vegetation turnovers during the Paleogene-early Neogene: origin of arid-adapted floras. Bot Rev 73:31–50

    Google Scholar 

  • Barrón E, Rivas-Carballo R, Postigo-Mijarra JM, Alcalde-Olivares C, Vieira M, Castro L, Pais J, Valle-Hernández M (2010) The Cenozoic vegetation of the Iberian Peninsula: a synthesis. Rev Palaeobot Palynol 162(3):382–402

    Google Scholar 

  • Bertini A, Martinetto E (2011) Reconstruction of vegetation transects for the Messinian/Piacenzian of Italy by means of comparative analysis of pollen, leaf and carpological records. Palaeogeogr Palaeoclimatol Palaeoecol 304:230–246

    Google Scholar 

  • Biltekin D, Popescu S-M, Suc J-P, Quézel P, Yavuz N, Jiménez-Moreno G, Safra A, Çağatay MN (2015) Anatolia: a plant refuge area during the last 23 million years according to pollen records from Turkey. Rev Palaeobot Palynol 215:1–22

    Google Scholar 

  • Collinson ME, Hooker JJ (2003) Paleogene vegetation of Eurasia: framework for mammalian faunas. In: Reumer JWF, Wessels W (eds) Distribution and migration of Tertiary mammals in Eurasia. A volume in honour of Hans de Bruijn, vol 10. Deinsea, Rotterdam, pp 41–83

    Google Scholar 

  • Colombero S, Alba DM, D’Amico C, Delfino M, Esu D, Giuntelli P, Pavia G (2017) Late Messinian mollusks and vertebrates from Moncucco Torinese, north-western Italy. Paleoecological and paleoclimatological implications. Palaeontol Electron 20:1–66

    Google Scholar 

  • de Gouvenain RC, Silander JA (2016) Temperate forests. In: Reference Module in Life Sciences. Elsevier, Amsterdam

    Google Scholar 

  • Denk T, Grimm GW (2009) The biogeographic history of beech trees. Rev Palaeobot Palynol 158(1):83–100

    Google Scholar 

  • Denk T, Grímsson F, Kvaček Z (2005) The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Bot J Linn Soc 149:369–417

    Google Scholar 

  • Denk T, Grímsson F, Zetter R (2010) Episodic migration of oaks to Iceland: evidence for a North Atlantic “land bridge” in the latest Miocene. Am J Bot 97:276–287

    Google Scholar 

  • Denk T, Grímsson F, Zetter R, Símonarson LA (2011) Late Cainozoic floras of Iceland. 15 million years of vegetation and climate history in the northern North Atlantic. Springer, Dordrecht, p 854

    Google Scholar 

  • Denk T, Grimm GW, Grímsson F, Zetter R (2013) Evidence from “Köppen signatures” of fossil plant assemblages for effective heat transport of gulf stream to subarctic North Atlantic during Miocene cooling. Biogeosciences 10:7927–7942

    Google Scholar 

  • Denk T, Zohner CM, Grimm GW, Renner SS (2018) Plant fossils reveal major biomes occupied by the late Miocene Old-World Pikermian fauna. Nat Ecol Evol 2(12):1864

    Google Scholar 

  • Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. PNAS 105(Supplement 1):11549–11555

    Google Scholar 

  • Eiserhardt WL, Borchsenius F, Plum CM, Ordonez A, Svenning JC (2015) Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecol Lett 18(3):263–272

    Google Scholar 

  • Erdei B, Dolezych M, Hably L (2009) The buried Miocene forest at Bükkábrány (Hungary). Rev Palaeobot Palynol 155(1–2):69–79

    Google Scholar 

  • FAO 2006. Number of native forest tree species. http://www.fao.org/forest-resources-assessment/past-assessments/fra-2005/maps-and-figures/en/

  • Ferguson AR, Seal AG, Davison RM (1990) Cultivar improvement, genetics and breeding of kiwifruit. Acta Hortic 282:335–334

    Google Scholar 

  • Fischer A, Marshall P, Camp A (2013) Disturbances in deciduous temperate forest ecosystems of the northern hemisphere: their effects on both recent and future forest development. Biodivers Conserv 22(9):1863–1893

    Google Scholar 

  • Graham A (1999) Late Cretaceous and Cenozoic history of north American vegetation (North of Mexico). Oxford University Press, New York. 350 pp

    Google Scholar 

  • Greenwood RM, Atkinson IAE (1977) Evolution of the divaricating plants in New Zealand in relation to moa browsing. Proc N. Z. Ecol Soc 24:21–33

    Google Scholar 

  • Grímsson F, Denk T (2005) Fagus from the Miocene of Iceland: systematics and biogeographical considerations. Rev Palaeobot Palynol 134:27–54

    Google Scholar 

  • Grímsson F, Denk T (2007) Floristic turnover in Iceland from 15 to 6 Ma - extracting biogeographical signals from fossil floras assemblages. J Biogeogr 34:1490–1504

    Google Scholar 

  • Grímsson F, Denk T, Símonarson LA (2007) Middle Miocene floras of Iceland – the early colonization of an island? Rev Palaeobot Palynol 144:181–219

    Google Scholar 

  • Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS, Liang MY, Liu JF, Yin QZ, Wei JJ (2008) A major reorganization of Asian climate by the early Miocene. Clim Past 4(3):153–174

    Google Scholar 

  • Herman AB, Akhmetiev MA, Kodrul TM, Moiseeva MG, Yakovleva AI (2009) Flora development in northeastern Asia and northern Alaska during the Cretaceous–Paleogene transitional epoch. Stratigr Geol Correl 17(1):79–97

    Google Scholar 

  • Hill RS, Beer YK, Hill KE, Maciunas E, Tarran MA, Wainman CC (2016) Evolution of the eucalypts - an interpretation from the macrofossil record. Aust J Bot 64(8):600–608

    Google Scholar 

  • Huang Y, Jacques FMB, Su T, Ferguson DK, Tang H, Chen W, Zhou Z (2015) Distribution of Cenozoic plant relicts in China explained by drought in dry season. Sci Rep 5:14212

    Google Scholar 

  • Huang Y, Jia L, Wang Q, Mosbrugger V, Utescher T, Su T, Zhou Z (2016) Cenozoic plant diversity of Yunnan: a review. Plant Divers 38:271–282

    Google Scholar 

  • Ivanov D, Utescher T, Mosbrugger V, Syabryaj S, Djordjevic-Milutinovic D, Molchanoff S (2011) Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Paleogeogr Palaeoclimatol Palaeoecol 304(3–4):262–275

    Google Scholar 

  • Jacques FMB, Su T, Spicer RA, Xing Y-W, Huang Y-J, Zhou Z-K (2014) Late Miocene southwestern Chinese floristic diversity shaped by the southeastern uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol 411:208–215

    Google Scholar 

  • Jacques FMB, Shi G, Su T, Zhou Z (2015) A tropical forest of the middle Miocene of Fujian (SE China) reveals Sino-Indian biogeographic affinities. Rev Palaeobot Palynol 216:76–91

    Google Scholar 

  • Jordan GJ (1997) Evidence of Pleistocene plant extinction and diversity from Regatta Point, western Tasmania, Australia. Bot J Linn Soc 123(1):45–71

    Google Scholar 

  • Kooyman RM, Wilf P, Barreda VD, Carpenter RJ, Jordan GJ, Kale Sniderman JM, Allen A, Brodribb TJ, Crayn D, Feild TS et al (2014) Paleo-Antarctic rainforest into the modern old world tropics: the rich past and threatened future of the “southern wet forest survivors”. Am J Bot 101(12):2121–2135

    Google Scholar 

  • Köppen W (1936) Das geographische system der Klimate. Gerbrüder Bonträger, Berlin

    Google Scholar 

  • Kováčová M, Doláková N, Kováč M (2011) Miocene vegetation pattern and climate change in the northwestern Central Paratethys domain (Czech and Slovak Republic). Geol Carpath 62(3):251–266

    Google Scholar 

  • Kvaček Z, Kovar-Eder J, Kováč M, Doláková N, Jechorek H, Parashiv V, Kováčová M, Sliva L (2006) Evolution of landscape and vegetation in the Central Paratethys area during the Miocene. Geol Carpath 57(4):295–310

    Google Scholar 

  • Larson-Johnson K (2016) Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytol 209(1):418–435

    Google Scholar 

  • Leopold EB, Reinink-Smith L, Liu G (2007) Overview of Alaskan Tertiary Floras-building on the work of Jack Wolfe. Cour Forschungsinst Senck 258:129–138

    Google Scholar 

  • Linnemann U, Su T, Kunzmann L, Spicer RA, Ding W-N, Spicer TEV, Zieger J, Hofmann M, Moraweck K, Gärtner A, Gerdes A, Marko L, Zhang S-T, Li S-F, Tang H, Huang J, Mulch A, Mosbrugger V, Zhou Z-K (2017) New U-Pb dates show a Paleogene origin for the modern Asian biodiversity hot spots. Geology 46(1):3–6

    Google Scholar 

  • Liu YSC, Jacques FMB (2010) Sinomenium macrocarpum sp. nov. (Menispermaceae) from the Miocene-Pliocene transition of Gray, northeast Tennessee, USA. Rev Palaeobot Palynol 159:112–122

    Google Scholar 

  • Liu YSC, Zheng YH (1995) Neogene Floras. In: Li X et al (eds) Fossil Floras of China through the geological ages. Guangdong Science and Technology Press, Guangzhou, pp 506–551

    Google Scholar 

  • Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P (2017) Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quat Sci Rev 163:23–55

    Google Scholar 

  • Mai DH (1995) Tertiäre Vegetationsgeschichte Europas. Methoden und Ergebnisse. Verlag G. Fischer, Jena. 691 pp

    Google Scholar 

  • Manchester SR, Chen Z, Lu A, Uemura K (2009) Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. J Syst Evol 47:1–42

    Google Scholar 

  • Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems–a southern perspective. Trends Ecol Evol 10(4):143–147

    Google Scholar 

  • Martinetto E (2015) Monographing the Pliocene and early Pleistocene carpofloras of Italy: methodological challenges and current progress. Palaeontogr Abt B 293:57–99

    Google Scholar 

  • Martinetto E, Scardia G, Varrone D (2007) Magnetobiostratigraphy of the Stura di Lanzo fossil forest succession. Riv Ital Paleontol Stratigr 113(1):109–125

    Google Scholar 

  • Martinetto E, Momohara A, Bizzarri R, Baldanza A, Delfino M, Esu D, Sardella R (2017) Late persistence and deterministic extinction of “humid thermophilous plant taxa of East Asian affinity” (HUTEA) in southern Europe. Palaeogeogr Palaeoclimatol Palaeoecol 467:211–231

    Google Scholar 

  • Martinetto E, Tema E, Irace A, Violanti D, Ciuto M, Zanella E (2018) High-diversity European palaeoflora favoured by early Pliocene warmth: new chronological constraints from the Ca’ Viettone section, NW Italy. Palaeogeogr Palaeoclimatol Palaeoecol 496:248–267

    Google Scholar 

  • McIver EE, Basinger JF (1999) Early Tertiary floral evolution in the Canadian high Arctic. Ann Mo Bot Gard 86(2):523–545

    Google Scholar 

  • Mehrotra RC, Liu XQ, Li CS, Wang YF, Chauhan MS (2005) Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Rev Palaeobot Palynol 135(3):145–163

    Google Scholar 

  • Momohara A (2016) Stages of major floral change in Japan based on macrofossil evidence and their connection to climate and geomorphological changes since the Pliocene. Quat Int 397:92–105

    Google Scholar 

  • Morley RJ (1998) Palynological evidence for Tertiary plant dispersals in the SE Asian region in relation to plate tectonics and climate. In: Biogeography and geological evolution of SE Asia. Backhuys, Leiden, pp 211–234

    Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, London. 362 pp

    Google Scholar 

  • Morley RJ (2001) Why are there so many primitive angiosperms in the rain forests of Asia-Australasia. In: Faunal and floral migrations and evolution in SE Asia-Australasia, vol 1. Balkema, Lisse, pp 185–199

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux V, Wettengel WW, Hedao P, Kassen KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938

    Google Scholar 

  • Osawa M (1993) Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. J Veg Sci 4:13–18

    Google Scholar 

  • Palazzesi L, Barreda V (2012) Fossil pollen records reveal a late rise of open-habitat ecosystems in Patagonia. Nat Commun 3:1294

    Google Scholar 

  • Palazzesi L, Barreda VD, Cuitiño JI, Guler MV, Tellería MC, Santos RV (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nat Commun 5:3558

    Google Scholar 

  • Perrie LR, Shepherd LD (2009) Reconstructing the species phylogeny of Pseudopanax (Araliaceae), a genus of hybridising trees. Mol Phylogenet Evol 52:774–783. https://doi.org/10.1016/j.ympev.2009.05.030

    CrossRef  Google Scholar 

  • Philippe M, Boonchai N, Ferguson DK, Jia H, Songtham W (2013) Giant trees from the middle Pleistocene of northern Thailand. Quat Sci Rev 65:1–4

    Google Scholar 

  • Pound MJ, Haywood AM, Salzmann U, Riding JB (2012) Global vegetation dynamics and latitudinal temperature gradients during the Mid to Late Miocene (15.97–5.33 Ma). Earth Sci Rev 112(1–2):1–22

    Google Scholar 

  • Quan C, Liu YSC, Utescher T (2012) Paleogene temperature gradient, seasonal variation and climate evolution of northeast China. Palaeogeogr Palaeoclimatol Palaeoecol 313:150–161

    Google Scholar 

  • Quan C, Liu Z, Utescher T, Jin J, Shu J, Li Y, Liu YSC (2014) Revisiting the Paleogene climate pattern of East Asia: a synthetic review. Earth-Sci Rev 139:213–230

    Google Scholar 

  • Quan C, Fu Q, Shi G, Liu Y, Li L, Liu X, Jin J (2016) First Oligocene mummified plant Lagerstaetten at the low latitudes of East Asia. Sci China Earth Ssci 59:445–448

    Google Scholar 

  • Rees-Owen RL, Gill FL, Newton RJ, Ivanović RF, Francis JE, Riding JB, Vane CH, dos Santos RAL (2018) The last forests on Antarctica: reconstructing flora and temperature from the Neogene Sirius group, Transantarctic Mountains. Org Geochem 118:4–14

    Google Scholar 

  • Salzmann U, Haywood AM, Lunt DJ, Valdes PJ, Hill DJ (2008) A new global biome reconstruction and data-model comparison for the middle Pliocene. Glob Ecol Biogeogr 17:432–447

    Google Scholar 

  • Salzmann U, Williams M, Haywood AM, Johnson AL, Kender S, Zalasiewicz J (2011) Climate and environment of a Pliocene warm world. Palaeogeogr Palaeoclimatol Palaeoecol 309(1):1–8

    Google Scholar 

  • Salzmann U, Dolan AM, Haywood AM, Chan W-L, Hill DJ, Abe-Ouchi A, Otto-Bliesner B, Bragg F, Chandler MA, Contoux C, Dowsett HJ, Jost A, Kamae Y, Lohmann Lunt DJ, Pickering SJ, Pound MJ, Ramstein G, Rosen-bloom NA, Sohl L, Stepanek C, Ueda H, Zhang Z (2013) Challenges in reconstructing terrestrial warming of the Pliocene revealed by data-model discord. Nat Clim Chang 3:969–974

    Google Scholar 

  • Sawangchote P, Grote PJ, Dilcher DL (2009) Tertiary leaf fossils of Mangifera (Anacardiaceae) from Li Basin, Thailand as examples of the utility of leaf marginal venation characters. Am J Bot 96:2048–2061

    Google Scholar 

  • Sawangchote P, Grote PJ, Dilcher DL (2010) Tertiary leaf fossils of Semecarpus (Anacardiaceae) from Li Basin, northern Thailand. Thai Forest Bulletin (Botany) 38:8–22

    Google Scholar 

  • Signor (1994) Biodiversity in Geological Time. Am Zool 34:23–32

    Google Scholar 

  • Silander JA (2001) Temperate forests. In: Encyclopedia of biodiversity. Princeton University, New Jersey, pp 607–626

    Google Scholar 

  • Smith-Patten BD, Bridge ES, Crawford PHC, Hough DH, Kelly JF, Patten MA (2015) Is extinction forever? Public Underst Sci 24(4):481–495

    Google Scholar 

  • Sniderman JMK, Jordan GJ (2011) Extent and timing of floristic exchange between Australian and Asian rain forests. J Biogeogr 38:1445–1455

    Google Scholar 

  • Sniderman JK, Jordan GJ, Cowling RM (2013) Fossil evidence for a hyperdiverse sclerophyll flora under a non–Mediterranean-type climate. Proc Natl Acad Sci 110(9):3423–3428

    Google Scholar 

  • Songtham W, Ratanasthien B, Mildenhall DC, Singharajwarapan S, Kandharosa W (2003) Oligocene-Miocene climatic changes in northern Thailand resulting from extrusion tectonics of southeast Asian landmass. ScienceAsia 29:221–233

    Google Scholar 

  • Songtham W, Ratanasthien B, Watanasak M, Mildenhall DC, Singharajwarapan S, Kandharosa W (2005) Tertiary basin evolution in northern Thailand: a palynological point of view. Nat Hist Bull Siam Soc 53(1):17–32

    Google Scholar 

  • Su T, Liu Y-S, Jacques FMB, Huang Y-J, Xing Y-W, Zhou Z-K (2013) The intensification of the east Asian winter monsoon contributed to the disappearance of Cedrus (Pinaceae) in southwestern China. Quat Res 80:316–325

    Google Scholar 

  • Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor 66:73–94

    Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary. Int J Plant Sci 162:S3–S17

    Google Scholar 

  • Trewartha GT, Horn LH (1980) An introduction to climate. McGraw-Hill, New York

    Google Scholar 

  • Utescher T, Bruch AA, Micheels A, Mosbrugger V, Popova S (2011) Cenozoic climate gradients in Eurasia -a palaeo-perspective on future climate change? Palaeogeogr Palaeoclimatol Palaeoecol 304:351–358

    Google Scholar 

  • Vassio E, Martinetto E, Dolezych M, Van der Burgh J (2008) Wood anatomy of the Glyptostrobus europaeus “whole-plant” from a Pliocene fossil forest of Italy. Rev Palaeobot Palynol 151:81–89

    Google Scholar 

  • Wagstaff SJ, Breitwieser I (2004) Phylogeny and classification of Brachyglottis (Senecioneae: Asteraceae): an example of a rapid species radiation in New Zealand. Syst Bot 29(4):1003–1010

    Google Scholar 

  • Wagstaff SJ, Garnock-Jones PJ (1998) Evolution and biogeography of the Hebe complex (Scrophulariaceae) inferred from ITS sequences. N Z J Bot 36:425–437

    Google Scholar 

  • Wagstaff SJ, Heenan PB, Sanderson MJ (1999) Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). Am J Bot 86:1346–1356

    Google Scholar 

  • Wilf P, Johnson KR (2004) Land plant extinction at the end of the cretaceous: a quantitative analysis of the North Dakota Megafloral record. Paleobiology 30(3):347–368

    Google Scholar 

  • Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu Rev Earth Planet Sci 41:561–603

    Google Scholar 

  • Wolfe JA (1977) Paleogene Floras from the Gulf of Alaska region. In: Professional Paper of the United States Geological Survey, vol 997. United States Government Publishing Office, Washington, D.C, pp 1–108

    Google Scholar 

  • Yamakawa C, Momohara A, Saito T, Nunotani T (2017) Composition and paleoenvironment of wetland forests dominated by Glyptostrobus and Metasequoia in the latest Pliocene (2.6 Ma) in central Japan. Palaeogeogr Palaeoclimatol Palaeoecol 467:191–210

    Google Scholar 

  • Zhang J-W, D’Rozario A, Adams JM, Li Y, Liang X-Q, Jacques FM, Zhou Z-K (2015) Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: implications for paleogeography and paleoclimate. Am J Bot 102(1):103–118

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Guido Grimm and Thomas Denk for constructive discussions and data contributions. Boglarka Erdei kindly provided the photographs of the Bükkábrány Fossil Forest. Mike Zavada and Steven Wallace are thanked for providing images of the Gray Fossil Site. Suggestions received by Steven R. Manchester consistently improved the text. Financial support was provided by the University of Turin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Martinetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Martinetto, E. et al. (2020). Triumph and Fall of the Wet, Warm, and Never-More-Diverse Temperate Forests (Oligocene-Pliocene). In: Martinetto, E., Tschopp, E., Gastaldo, R.A. (eds) Nature through Time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-35058-1_2

Download citation