Skip to main content

Back to the Beginnings: The Silurian-Devonian as a Time of Major Innovation in Plants and Their Communities

Part of the Springer Textbooks in Earth Sciences, Geography and Environment book series (STEGE)

Abstract

Massive changes in terrestrial paleoecology occurred during the Devonian. This period saw the evolution of both seed plants (e.g., Elkinsia and Moresnetia), fully laminate∗ leaves and wood. Wood evolved independently in different plant groups during the Middle Devonian (arborescent lycopsids, cladoxylopsids, and progymnosperms) resulting in the evolution of the tree habit at this time (Givetian, Gilboa forest, USA) and of various growth and architectural configurations. By the end of the Devonian, 30-m-tall trees were distributed worldwide. Prior to the appearance of a tree canopy habit, other early plant groups (trimerophytes) that colonized the planet’s landscapes were of smaller stature attaining heights of a few meters with a dense, three-dimensional array of thin lateral branches functioning as “leaves”. Laminate leaves, as we know them today, appeared, independently, at different times in the Devonian. In the Lower Devonian, trees were not present and plants were shrubby (e.g., Aglaophyton major), preserved in a fossilized community at the Rhynie chert locality in Scotland and other places. Many of these stem-group plants (i.e., preceding the differentiation of most modern lineages) were leafless and rootless, anchored to the substrate by rhizoids. The earliest land plant macrofossil remains date back to the Silurian, with the early Silurian Cooksonia barrandei from central Europe representing the earliest vascular plant known, to date. This plant had minute bifurcating aerial axes terminating in expanded sporangia. Dispersed microfossils (spores and phytodebris) in continental and coastal marine sediments provide the earliest evidence for land plants (= Embryophytes), which are first reported from the Early Ordovician.

Electronic supplementary material

A slide presentation and an explanation of each slide’s content is freely available to everyone upon request via email to one of the editors: edoardo.martinetto@unito.it, ragastal@colby.edu, tschopp.e@gmail.com*The asterisk designates terms explained in the Glossary.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-35058-1_15
  • Chapter length: 32 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-35058-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Hardcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9
Fig. 15.10
Fig. 15.11
Fig. 15.12
Fig. 15.13
Fig. 15.14
Fig. 15.15
Fig. 15.16
Fig. 15.17
Fig. 15.18
Fig. 15.19
Fig. 15.20

References

  • Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc Lond B 353:113–130

    Google Scholar 

  • Algeo TJ, Scheckler SE (2010) Land plant evolution and weathering rates changes in the Devonian. J Earth Sci 21(Supp. 1):75–78

    Google Scholar 

  • Algeo TJ, Scheckler SE, Maynard JB (2001) Effects of early vascular land plants on weathering processes and global chemical fluxes during the Middle and Late Devonian. In: Gensel PG, Edwards D (eds) Plants invade the land: evolutionary and environmental perspectives. Columbia Univ Press, New York, pp 213–236

    Google Scholar 

  • Allen JP, Gastaldo RA (2006) Sedimentology and taphonomy of the Early to Middle Devonian plant-bearing beds of the Trout Valley Formation, Maine. In: DiMichele WA, Greb S (eds) Wetlands through time. Special publication, vol 399. Geological Society of America, Boulder, pp 57–78

    Google Scholar 

  • Andrews HN, Gensel PG, Forbes WH (1974) An apparently heterosporous plant from the Middle Devonian of New Brunswick. Palaeontology 17:387–408

    Google Scholar 

  • Andrews HN, Kasper EA, Forbes WH, Gensel PG, Chaloner WG (1977) Early Devonian flora of the Trout Valley Formation of northern Maine. Rev Palaeobot Palynol 23:255–285

    Google Scholar 

  • Arber EAN (1921) Devonian floras. Cambridge University Press, Cambridge, 109 p

    Google Scholar 

  • Axelrod DI (1959) Evolution of the Psilophyte Paleoflora. Evolution 13:264–275

    Google Scholar 

  • Banks HP (1968) The early history of land plants. In: Drake E (ed) Evolution and environment: a symposium presented on the one hundredth anniversary of the foundation of the Peabody Museum of Natural History at Yale University. Yale University Press, New Haven and London, pp 73–107

    Google Scholar 

  • Banks HP, Bonamo PM, Grierson JD (1972) Leclercqia complexa gen. et sp. nov., a new lycopod from the late Middle Devonian of eastern New York. Rev Palaeobot Palynol 14:19–40

    Google Scholar 

  • Basinger JF, Kotyk ME, Gensel PG (1996) Early land plants from the Late Silurian-Early Devonian of Bathurst Island, Canadian Arctic Archepelago. Geol Surv Can Curr Res 1996B:51–60

    Google Scholar 

  • Beck CB (1962) Reconstructions of Archaeopteris, and further consideration of its phylogenetic position. Am J Bot 49:373–382

    Google Scholar 

  • Berner RA, Kothavala Z (2001) Geocarb III: a revised model of atmospheric CO2 over Phanerozic time. Am J Sci 301:182–204

    Google Scholar 

  • Bower FO (1908) The origin of a land flora, a theory based on the facts of alternation. Macmillan, London, 727 p

    Google Scholar 

  • Boyce KC, Hotton CL, Fogel ML, Cody GD, Hazen RM, Knoll AH, Hueber FM (2007) Devonian landscape heterogeneity recorded by a giant fungus. Geology 35:399–402

    Google Scholar 

  • Čelakovský J (1874) Über die verschiedenen Formen und Bedetutung des Generationswechsels der Pflanzen. Jahresbericht der Königl Böhmischen Gesellschaft der Wissenschaften Prague 1874:22–61

    Google Scholar 

  • Channing A, Edwards D (2009) Yellowstone hot spring environments and the palaeo-ecophysiology of Rhynie chert plants: towards a synthesis. Plant Evol Divers 2:111–143

    Google Scholar 

  • Cressler WL (2006) Plant paleoecology of the Late Devonian Red Hill locality, north-central Pennsylvania, an Archaeopteris-dominated wetland plant community and early tetrapod site. In: Greb SF, DiMichele WA (eds) Wetlands through time. Special paper. Geological Society of America, Boulder, pp 79–102

    Google Scholar 

  • Cressler WL, Prestianni C, LePage BA (2010) Late Devonian spermatophyte diversity and paleoecology at Red Hill, north-Central Pennsylvania, USA. Int J Coal Geol 83:91–102

    Google Scholar 

  • Daeschler EB, Clack JA, Shubin NH (2009) Late Devonian tetrapod remains from Red Hill, Pennsylvania, USA: how much diversity? Acta Zool 90:306–317

    Google Scholar 

  • Daeschler EB, Cressler WL III (2011) Late Devonian paleontology and paleoenvironments at Red Hill and other fossil sites in the Catskill Formation of north-central Pennsylvania. In: Ruffolo RM, Ciampaglio CN (eds) Geological Society of America field guide, vol 20. GSA, Boulder, pp 1–16

    Google Scholar 

  • Daeschler EB, Shubin NH, Jenkins FA Jr (2006) A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440:757–763

    Google Scholar 

  • Daeschler EB, Shubin NH, Thomson KS, Amaral WW (1994) A Devonian tetrapod from North America. Science 265:639–642

    Google Scholar 

  • Dawson JW (1859) On fossil plants from the Devonian rocks of Canada. Q J Geol Soc Lond 15:477–488

    Google Scholar 

  • Dawson JW (1870) The primitive vegetation of the Earth. Nature 2:85–88

    Google Scholar 

  • Dawson JW (1871) The fossil plants of the Devonian and Upper Silurian formations of Canada. Geol Surv Can 1:1–19

    Google Scholar 

  • Dorf E, Rankin D (1962) Early Devonian plants from the Traveler Mountain area, Maine. J Paleontol 36:999–1004

    Google Scholar 

  • Dunlop JA, Garwood RJ (2018) Terrestrial invertebrates in the Rhynie chert ecosystem. Philos Trans R Soc Lond Ser B 373(1739):20160493

    Google Scholar 

  • Edwards D (1970) Fertile Rhyniophytina from the Lower Devonian of Britain. Palaeontology 13:451–461

    Google Scholar 

  • Edwards D (1996) New insights into early land ecosystems: a glimpse of a Lilliputian world. Rev Palaeobot Palynol 90:159–174

    Google Scholar 

  • Edwards D, Axe L, Honegger R (2013) Contributions to the diversity in cryptogamic covers in the mid-Palaeozoic: Nematothallus revisited. Bot J Linn Soc 173:505–534

    Google Scholar 

  • Edwards D, Davies KL, Axe L (1992) A vascular conducting strand in the early land plant Cooksonia. Nature 357:683–685

    Google Scholar 

  • Edwards D, Feehan J, Smith DG (1983) A late Wenlock flora from Co. Tipperary, Ireland. Bot J Linn Soc 86:19–36

    Google Scholar 

  • Edwards D, Honegger R, Axe L, Morris JL (2018b) Anatomically preserved Silurian ‘nematophytes’ from the Welsh Borderland (UK). Bot J Linn Soc 187:272–291

    Google Scholar 

  • Edwards D, Kenrick P, Dolan L (2018a) History and contemporary significance of the Rhynie cherts–our earliest preserved terrestrial ecosystem. Philos Trans R Soc Lond B Biol Sci 373:20160489

    Google Scholar 

  • Edwards D, Morris JL, Richardson JB, Kenrick P (2014) Cryptospores and cryptophytes reveal hidden diversity in early land floras. New Phytol 202:50–78

    Google Scholar 

  • Edwards D, Richardson JB, Axe L, Davies KL (2012) A new group of Early Devonian plants with valvate sporangia containing sculptured permanent dyads. Bot J Linn Soc 168:229–257

    Google Scholar 

  • Elick JM, Driese SG, Mora CI (1998) Very large plant and root traces from the Early to Middle Devonian: implications for early terrestrial ecosystems and atmospheric p(CO2). Geology 26:143–146

    Google Scholar 

  • Ergolskaya ZV (1936) Petrographical examination of the Barzas coals. Trudy Centralnogo Nauchno-Issledovatelskogo Geologo-Razvedocnogo Instituta. Trans Cent Geol Prospect Inst 70:5–54

    Google Scholar 

  • Fairon-Demaret M (1985) The fossil plants of the Emsian of Sart Tilman Belgium 1. Stockmansia langii new genus new combination. Review of Palaeobotany. Palynology 44:243–260

    Google Scholar 

  • Fairon-Demaret M (1986) Stockmansella, a new name for Stockmansia Fairon-Demaret (fossil). Taxon 35:334

    Google Scholar 

  • Fanning U, Richardson JB, Edwards D (1988) Cryptic evolution in an early land plant. Evol Trends Plants 2:13–24

    Google Scholar 

  • Fleming J (1831) On the occurrence of scales of vertebrate animals in the old red sandstone of Fifeshire Edinburgh. J Nat Geogr Sci 3:81–86

    Google Scholar 

  • Garratt MJ, Tims JD, Rickards RB, Chambers TC, Douglas JG (1984) The appearance of Baragwanathia (Lycophytina) in the Silurian. Bot J Linn Soc 89:355–358

    Google Scholar 

  • Gastaldo RA (2016) New paleontological insights into the Emsian–Eifelian Trout Valley Formation, Baxter State Park’s scientific forest management area, Aroostook County, Maine. PALAIOS 31:339–346

    Google Scholar 

  • Gensel PG (1976) Renalia hueberi, a new plant from the Lower Devonian of Gaspé. Rev Palaeobot Palynol 22:19–37

    Google Scholar 

  • Gensel PG, Andrew HN (1984) Plant life in the Devonian. Praeger Press, Westport, 380 p

    Google Scholar 

  • Gensel PG (2008) The earliest land plants. Annu Rev Ecol Evol Syst 39:459–477

    Google Scholar 

  • Gensel PG (2018) Early Devonian woody plants and implications for the early evolution of vascular cambia. In: Krings M, Harper CM, Cuneo NR, Rothwell GW (eds) Transformative paleobotany. Elsevier, Amsterdam, pp 21–33

    Google Scholar 

  • Gensel PG, Berry CM (2001) Early lycophyte evolution. Am Fern J 91:74–98

    Google Scholar 

  • Gensel PG, Berry CM (2016) Sporangial morphology of the early Devonian zosterophyll Sawdonia ornata from the type locality (Gaspé). Int J Plant Sci 177:618–632

    Google Scholar 

  • Gensel PG, Johnson NG (1994) The cuticular structure and stomatal organization of Orestovia sp. cf. O. petzii from the Kuznetsk basin, western Siberia. Palaeontogr Abt B 233:1–10

    Google Scholar 

  • Gerrienne P, Gensel PG, Strullu-Derrien C, Lardeux H, Steemans P, Prestianni C (2011) A simple type of wood in two early Devonian plants. Science 333:837

    Google Scholar 

  • Gibling MR, Davies NS (2012) Paleozoic landscapes shaped by plant evolution. Nat Geosci 5:99–105

    Google Scholar 

  • Gibling MR, Davies NS, Falcon-Lang HJ, Bashforth AR, DiMichele WA, Rygel MC, Ielpi A (2014) Palaeozoic co-evolution of rivers and vegetation: a synthesis of current knowledge. Proc Geol Assoc 125:524–533

    Google Scholar 

  • Giesen P, Berry CM (2013) Reconstruction and growth of the early tree Calamophyton (Pseudosporochnales, Cladoxylopsida) based on exceptionally complete specimens from Lindlar, Germany (Mid-Devonian): organic connection of Calamophyton branches and Duisbergia trunks. Int J Plant Sci 174(4):665–686

    Google Scholar 

  • Glasspool IJ, Edwards D, Axe L (2006) Charcoal in the Early Devonian: a wildfire-derived Konservat–Lagerstätte. Rev Palaeobot Palynol 142:131–136

    Google Scholar 

  • Goldring W (1924) The Upper Devonian forest of seed ferns in eastern New York. N Y State Mus Bull 251:50–72

    Google Scholar 

  • Goldring W (1927) The oldest known petrified forest. Science 24:514–529

    Google Scholar 

  • Gonez P, Gerrienne P (2010) Aberlemnia caledonica gen. et comb. nov., a new name for Cooksonia caledonica Edwards 1970. Rev Palaeobot Palynol 163:64–72

    Google Scholar 

  • Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 25:4535–4540

    Google Scholar 

  • Graham LE, Cook ME, Hanson DT, Pigg KB, Graham JM (2010) Structural, physiological, and stable carbon isotopic evidence that the enigmatic Paleozoic fossil Prototaxites formed from rolled liverwort mats. Am J Bot 97:268–275

    Google Scholar 

  • Granoff JA, Gensel PG, Andrews HN (1976) A new species of Pertica from the Devonian of eastern Canada. Palaeontogr Abt B 155:119–128

    Google Scholar 

  • Gray J (1985) The microfossil record of early land plants; advances in understanding of early terrestrialization, 1970–1984. Philos Trans R Soc Lond B 309:167–195

    Google Scholar 

  • Gray J, Boucot AJ (1971) Early Silurian spore tetrads from New York: earliest new world evidence for vascular plants? Science 173:918–921

    Google Scholar 

  • Grierson JD, Hueber FM (1967) Devonian lycopods from northern New Brunswick. Alta Soc Pet Geol Calg 2:823–836

    Google Scholar 

  • Griffing DH, Bridge JS, Hotton CL (2000) Coastal-fluvial palaeoenvironments and plant palaeoecology of the Lower Devonian (Emsian), Gaspé Bay, Québec, Canada. In: Friend PF, Williams BPJ (eds) New perspectives on the Old Red Sandstone. Geological Society, London, pp 61–84

    Google Scholar 

  • Habgood KS, Edwards D, Axe L (2002) New perspectives on Cooksonia from the Lower Devonian of the Welsh Borderland. Bot J Linn Soc 139:339–359

    Google Scholar 

  • Hao S-G, Xue JA (2013) The Early Devonian Posongchong flora of Yunnan, a contribution to an understanding of the evolution and early diversification of vascular plants. Science Press, Beijing, 366 p

    Google Scholar 

  • Hoffman C, Tomescu AMF (2013) An early origin of secondary growth: Franhueberia gerriennei gen. et sp. nov. from the Lower Devonian of Gaspé (Quebec, Canada). Am J Bot 100:754–763

    Google Scholar 

  • Honegger R, Edwards D, Axe L (2012) The earliest records of internally stratified cyanobacterial and algal lichens from the Lower Devonian of the Welsh Borderland. New Phytol 197:264–275

    Google Scholar 

  • Hopping C (1956) On a specimen of Psilophyton robustius Dawson, from the Lower Devonian of Canada. Proc R Soc Edinb B 66:10–28

    Google Scholar 

  • Hotton CL, Hueber FM, Griffing DH, Bridge JS (2001) Early terrestrial plant environments: an example from the Emsian of Gaspé, Canada. In: Gensel PG, Edwards DH (eds) Plants invade the land: evolutionary and environmental perspectives. Columbia University Press, New York, pp 179–212

    Google Scholar 

  • Hueber FM (1964) The psilophytes and their relationship to the origin of ferns. Torrey Bot Club Mem 21:5–9

    Google Scholar 

  • Hueber FM (1971) Sawdonia ornata: a new name for Psilophyton princeps var. ornatum. Taxon 20:641–642

    Google Scholar 

  • Hueber FM (1983) A new species of Baragwanathia from the Sextant Formation (Emsian), northern Ontario, Canada. Bot J Linn Soc 86:57–79

    Google Scholar 

  • Hueber FM (2001) Rotted wood-alga fungus: the history and life of Prototaxites Dawson 1859. Rev Palaeobot Palynol 116:123–159

    Google Scholar 

  • Hueber FM, Banks HP (1967) Psilophyton princeps: the search for organic connection. Taxon 16:81–85

    Google Scholar 

  • Hueber FM, Banks HP (1979) Serrulacaulis furcatus gen. sp. nov., a new zosterophyll from the Lower Upper Devonian of New York state. Rev Palaeobot Palynol 28:169–189

    Google Scholar 

  • Hueber FM, Grierson JD (1961) On the occurrence of Psilophyton princeps in the early Upper Devonian of New York. Am J Bot 48:473–479

    Google Scholar 

  • Kasper AE Jr, Gensel PG, Forbes WH, Andrews HN Jr (1988) Plant Paleontology in the state of Maine - a review: Maine geological survey studies in Maine. Geology 1:109–128

    Google Scholar 

  • Kennedy K, Gensel PG, Gibling MR (2012) Paleoenvironmental inferences from the classic Early Devonian plant-bearing locality of the Campbellton Formation, New Brunswick, Canada. PALAIOS 27:424–438

    Google Scholar 

  • Kennedy K, Gibling MR (2011) The Campbellton Formation, New Brunswick, Canada: paleoenvironments in an important Early Devonian terrestrial locality. Can J Earth Sci 48:1561–1580

    Google Scholar 

  • Kenrick P (2018) Changing expressions: a hypothesis for the origin of the vascular plant life cycle. Philos Trans R Soc Lond B Biol Sci 373(1739):20170149. https://doi.org/10.1098/rstb.2017.0149

    CrossRef  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early diversification of land plants – a cladistic study: Smithsonian series in comparative evolutionay biology. Smithsonian Institution Press, Washington, 441 p

    Google Scholar 

  • Kenrick P, Wellman CH, Schneider H, Edgecombe GD (2012) A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos Trans R Soc Lond B 367:519–536

    Google Scholar 

  • Kerp H (2018) Organs and tissues of Rhynie chert plants. Philos Trans R Soc Lond Ser B 373(1739):20160495. https://doi.org/10.1098/rstb.2016.0495

    CrossRef  Google Scholar 

  • Kerp H, Hass MH, Mosbrugger V (2001) New data on Nothia aphylla Lyon 1964 ex El-Saadawy et Lacey 1979, a -poorly known plant from the Lower Devonian Rhynie Chert. In: Gensel PG, Edwards D (eds) Plants invade the land: evolutionary & environmental perspectives. Columbia University Press, New York, pp 52–82

    Google Scholar 

  • Kerp H, Trewin NH, Hass H (2003) New gametophytes from the Early Devonian Rhynie Chert. Trans R Soc Edinb 94:411–428

    Google Scholar 

  • Kerp H, Wellman CH, Krings M, Kearney P, Hass H (2013) Reproductive organs and in situ spores of Asteroxylon mackiei Kidston & Lang, the most complex plant from the lower Devonian Rhynie Chert. Int J Plant Sci 174:293–308

    Google Scholar 

  • Kotyk ME (1998) Late silurian and early devonian fossil plants of Bathurst Island, Arctic Canada. Master’s thesis, Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada

    Google Scholar 

  • Kotyk ME, Basinger JF (2000) The Early Devonian (Pragian) zosterophyll Bathurstia denticulata Hueber. Can J Bot 78:193–207

    Google Scholar 

  • Kotyk ME, Basinger JF, Gensel PG, DeFreitas TA (2002) Morphologically complex plant macrofossils from the late Silurian of Arctic Canada. Am J Bot 89:1004–1013

    Google Scholar 

  • Kraft P, Pšenička J, Sakala J, Frýda J (2018) Initial plant diversification and dispersal event in upper Silurian of the Prague Basin. Palaeogeogr Palaeoclimatol Palaeoecol 514:144–155

    Google Scholar 

  • Kräusel R, Venkatachala BS (1966) Devonische Spongiophytaceen aus Ost-und West-Asien. Senkenbergia Lethaia 47:215–251

    Google Scholar 

  • Krings M, Harper CJ, Taylor EL (2017) Fungi and fungal interactions in the Rhynie Chert: a review of the evidence, with the description of Perexiflasca tayloriana gen. et sp. nov. Philos Trans R Soc Lond B 373:20160500

    Google Scholar 

  • Lang WH (1937) On the plant-remains from the Downtonian of England and Wales. Philos Trans R Soc Lond B 227:245–291

    Google Scholar 

  • Lang WH, Cookson IC (1935) On a flora, including vascular land plants, associated with Monograptus, in rocks of Silurian age, from Victoria, Australia. Philos Trans R Soc Lond B 224:421–449

    Google Scholar 

  • Li CS, Edwards D (1995) A re-investigation of Halle’s Drepanophycus spinaeformis Göpp. from the Lower Devonian of Yunnan Province, southern China. Bot J Linn Soc 118:163–192

    Google Scholar 

  • Libertín M, Kvaček J, Bek J, Štorch P (2018b) Plant diversity of the mid Silurian (Lower Wenlock, Sheinwoodian) terrestrial vegetation preserved in marine sediments from the Barrandian area, The Czech Republic. Foss Impr 74:327–333

    Google Scholar 

  • Libertín M, Kvaček J, Bek J, Žárský V, Štorch P (2018a) Sporophytes of polysporangiate land plants from the early Silurian period may have been photosynthetically autonomous. Nat Plants 4:269–271

    Google Scholar 

  • McCourt RM, Delwiche CF, Karol KG (2004) Charophyte algae and land plant origins. Trends Evol Ecol 19:661–666

    Google Scholar 

  • Morris JL, Edwards D, Richardson JB (2018a) The advantages and frustrations of a plant Lagerstätte as illustrated by a new taxon from the Lower Devonian of the Welsh Borderland, UK. In: Krings M, Harper CM, Cuneo NR, Rothwell GW (eds) Transformative paleobotany. Elsevier, Amsterdam, pp 49–67

    Google Scholar 

  • Morris JL, Edwards D, Richardson JB, Axe L, Davies KL (2012) Further insights into trilete spore producers from the Early Devonian (Lochkovian) of the Welsh Borderland, UK. Rev Palaeobot Palynol 185:35–36

    Google Scholar 

  • Morris JL, Leake JR, Stein WE, Berry CM, Marshal JEA, Wellman CH, Milton JA, Hillier S, Mannolini F, Quirk J, Beerling DJ (2015) Investigating Devonian trees as geo-engineers of past climates: linking palaeosols to palaeobotany and experimental geobiology. Palaeontology 58:787–801

    Google Scholar 

  • Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman C, Yang Z, Schneider H, Donoghue PCJ (2018b) The timescale of early land plant evolution. Proc Natl Acad Sci USA 115:E2274–E2283

    Google Scholar 

  • Morris JL, Richardson JB, Edwards D (2011) Lower Devonian plant and spore assemblages from Lower Old Red Sandstone strata of Tredomen Quarry, South Wales. Rev Palaeobot Palynol 165:183–208

    Google Scholar 

  • Prestianni C, Gerrienne P (2010) Early Seed plant radiation: an ecological hypothesis. In: Vecoli M, Clement G, Meyer-Berthaud B (eds) The terrestrialization process: modelling complex interactions at the biosphere-geosphere interface, vol 339. Geological Society Special Publication, London, pp 71–80

    Google Scholar 

  • Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman C, Schneider H, Pisani D, Donoghue PCJ (2018) The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28:733–745

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) 400 million year old vesicular arbuscular mycorrhizae (VAM). Proc Natl Acad Sci USA 91:11841–11843

    Google Scholar 

  • Renzaglia KS, Crandall-Stotler B, Duckett J, Schuette S, Strother PK (2015) Permanent spore dyads are not ‘a thing of the past’: on their occurrence in the liverwort Haplomitrium (Haplomitriopsida). Bot J Linn Soc 179:658–669

    Google Scholar 

  • Retallack GJ, Landing E (2014) Affinities and architecture of Devonian trunks of Prototaxites loganii. Mycologia 106:1143–1156

    Google Scholar 

  • Rice CM, Trewin NH, Anderson LI (2003) Geological setting of the early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system. J Geol Soc Lond 159:203–214

    Google Scholar 

  • Richardson JB (1985) Lower Palaeozoic sporomorphs: their stratigraphical distribution and possible affinities. Philos Trans R Soc Lond B 309:201–205

    Google Scholar 

  • Rothwell GW, Scheckler SE, Gillespie WH (1989) Elkinsia gen. nov., a Late Devonian gymosperm with cupulate ovules. Bot Gaz 150:170–189

    Google Scholar 

  • Rubenstein CV, Gerrienne P, De la Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369

    Google Scholar 

  • Scheckler SE (1986) Geology, floristics and paleoecology of Late Devonian coal swamps from Appalachian Laurentia (USA). Ann Soc Geol Belg 109:209–222

    Google Scholar 

  • Selover RW, Gastaldo RA, Nelson RE (2005) An estuarine assemblage from the Middle Devonian Trout Valley Formation of northern Maine. PALAIOS 20:192–197

    Google Scholar 

  • Serbet R, Rothwell GW (1992) Characterizing the most primitive seed ferns. A reconstruction of Elkinsia polymorpha. Int J Plant Sci 153:602–621

    Google Scholar 

  • Shear WA, Palmer JM, Coddington JA, Bonamo PM (1989) A Devonian spinneret: early evidence of spiders and silk use. Science 246:479–481

    Google Scholar 

  • Shear WA, Selden PA, Rolfe WDI, Bonamo PM, Grierson JD (1987) A spider and other arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). Am Mus Novit 2901:1–74

    Google Scholar 

  • Steemans P, Le Hérissé A, Melvin J, Miller MA, Paris F, Verniers J, Wellman CH (2009) Origin and radiation of the earliest vascular land plants. Science 324:353

    Google Scholar 

  • Steemans P, Wellman CH, Gerrienne P (2010) Paleogeographic and paleoclimatic considerations based on Ordovician to Lochkovian vegetation. Geol Soc Lond Spec Publ 339:49–58

    Google Scholar 

  • Stein WE (2018) Middle Devonian terrestrial ecosystem in the Catskill region: evidence from tree-size rooting trace fossils. Paper no 27-6. NE GSA. Geol Soc Am Abstr Programs 50(2). https://doi.org/10.1130/abs/2018NE-310545.

  • Stein WE, Berry CM, VanAller Hernick L, Mannolini F (2012) Surprisingly complex community discovered in the mid-Devonian fossil forest at Gilboa. Nature 483:78–81

    Google Scholar 

  • Stein WE, Mannolini F, VanAller Hernick L, Landing E, Berry CM (2007) Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa. Nature 446:904–907

    Google Scholar 

  • Strother PK (2016) Systematics and evolutionary significance of some new cryoptospores from the Cambrian of eastern Tennessee, USA. Rev Palaeobot Palynol 227:28–41

    Google Scholar 

  • Strother PK, Taylor WA (2018) The evolutionary origin of the plant spore in relation to the antithetic origin of the plant sporophyte. In: Krings M, Harper CJ, Cuneo NR, Rothwell GW (eds) Transformative paleobotany: papers to commemorate the life and legacy of Thomas N. Taylor. Academic Press, Cambridge, pp 3–20

    Google Scholar 

  • Strullu-Derrien C, Kenrick P, Taffereau P, Cochard H, Bonnemain J-L, LeHerisse A, Lardeux H, Radel E (2014) The earliest wood and its hydraulic properties documented in ca 407-million-year-old fossils using synchrotron microtomography. Bot J Linn Soc 174:423–437

    Google Scholar 

  • Taylor TN, Hass H, Kerp H (1997) A cyanolichen from the Lower Devonian Rhynie Chert. Am J Bot 84:992–1004

    Google Scholar 

  • Taylor TN, Hass H, Kerp H (1999) The oldest fossil ascomycetes. Nature 399:648

    Google Scholar 

  • Taylor TN, Kerp H, Hass H (2005) Life history biology of early land plants: deciphering the gametophyte phase. Proc Natl Acad Sci USA 102:5892–5897

    Google Scholar 

  • Taylor TN, Klavins SD, Krings M, Taylor EL, Kerp H, Hass H (2003) Fungi from the Rhynie chert: a view from the dark side. Earth Environ Sci Trans R Soc Edinb 94:457–473

    Google Scholar 

  • Taylor TN, Remy W, Hass H (1992) Parasitism in a 400-million-year-old green alga. Nature 357:493–494

    Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2009) Palaeobotany, the biology and evolution of fossil plants, 2nd edn. Elsevier, Amsterdam, 1230 p

    Google Scholar 

  • Taylor WA, Strother PK, Vecoli M, Al-Hajri S (2017) Wall ultrastructure of the oldest embryophytic spores: implications for early land plant evolution. Rev Micropaleontol 60(3):281–288. https://doi.org/10.1016/j.revmic.2016.12.002

    CrossRef  Google Scholar 

  • Tims JD, Chambers TC (1984) Rhyniophytina and Trimerophytina from the early land flora of Victoria, Australia. Palaeontology 27:265–279

    Google Scholar 

  • Trewin N, Kerp H (2018) The Rhynie and Windyfield cherts, Early Devonian, Rhynie, Scotland. In: Fraser NC, Suess H-D (eds) Terrestrial conservation Lagerstätten: windows into the evolution of life on land. Dunedin Academic Press, Edinburgh, pp 1–38

    Google Scholar 

  • Wellman C (2010) The invasion of the land by plants: when and where? New Phytol 188:306–309

    Google Scholar 

  • Wellman CH, Gensel PG (2004) Morphology and wall ultrastructure of the spores of the Lower Devonian plant Oocampsa catheta Andrews et al.. Review of Palaeobotany. Palynology 130:269–295

    Google Scholar 

  • Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285

    Google Scholar 

  • Wellman CH, Steemans P, Miller MA (2013) Spore assemblages from Upper Ordovician and lowermost Silurian sediments recovered from the Qusaiba-1 shallow core hole, Qasim region, central Saudi Arabia. Rev Palaeobot Palynol 212:111–126

    Google Scholar 

Download references

Acknowledgments

The authors want to thank the following colleagues, in alphabetical order, for images used as figures and in the accompanying lecture slides: Dr. Christopher Berry, Cardiff University, UK; Dr. Walter Cressler, West Chester University of Pennsylvania, USA; Dr. Jeffrey Doran, Canada; Prof. Dr. Hans Kerp, Universität Münster, Germany; Dr. Douglas Jensen, Converse College, Spartanburg, SC, USA; Prof. Stephen Scheckler, Virginia Polytechnic Institute and University, Blacksburg, USA; Dr. William Stein, State University of New York-Binghamton, USA; Dr. Paul Strother, Boston College, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia G. Gensel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Gensel, P.G., Glasspool, I., Gastaldo, R.A., Libertin, M., Kvaček, J. (2020). Back to the Beginnings: The Silurian-Devonian as a Time of Major Innovation in Plants and Their Communities. In: Martinetto, E., Tschopp, E., Gastaldo, R.A. (eds) Nature through Time. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-35058-1_15

Download citation