U.S. EPA (U.S. Environmental Protection Agency): Quantity of municipal solid waste generated and managed. EPA’s Report on the Environment (ROE). https://cfpub.epa.gov/roe/indicator.cfm?i=53. Accessed Oct 2016
Fischer, C., Crowe, M.: Household and Municipal Waste: Comparability of Data in Eea Member Countries. European Environment Agency, Copenhagen, Denmark (2000)
Google Scholar
Sahimaa, O., Hupponen, M., Horttanainen, M., Sorvari, J.: Method for residual household waste composition studies. Waste Manage. 46, 3–14 (2015)
CrossRef
Google Scholar
Edjabou, M.E., Jensen, M.B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., Astrup, T.F.: Municipal solid waste composition: Sampling methodology, statistical analyzes, and case study evaluation. Waste Manage. 36, 12–23 (2015)
CrossRef
Google Scholar
Liikanen, M., Sahimaa, O., Hupponen, M., Havukainen, J., Sorvari, J., Horttanainen, M.: Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manage. 52, 25–33 (2016)
CAS
CrossRef
Google Scholar
Zettl, E., Milunov, M., Potrykus, A., Kostadinova, T.: Waste Classification, Sampling and Analyzis. Federal Environment Agency, Germany (2015)
Google Scholar
U.S. EPA (U.S. Environmental Protection Agency). MSW Characterization Methodology. https://www.epa.gov/sites/production/files/2015-09/documents/06numbers.pdf. Accessed Sep 2015
Nordtest Method. Solid waste, municipal: sampling and characterisation. Nordtest method NT ENVIR, Finland. http://www.nordtest.info/images/documents/nt-methods/environment/NT%20envir%20001_Solid%20waste,%20municipal_Sampling%20and%20characterisation_Nordtest%20Method.pdf. Accessed May 1995
Haque, M.: Sampling methods in social research. Ph.D. Scholar, Visva Bharati, Santiniketan, West Bangal (2010)
Google Scholar
Dodd, S.-J., Epstein, I.: Practice-based Research in Social Work: A Guide for Reluctant Researchers. Routledge, New York (2012)
CrossRef
Google Scholar
Dahlén, L., Lagerkvist, A.: Methods for household waste composition studies. Waste Manage. 28, 1100–1112 (2008)
CrossRef
Google Scholar
Nilsson, P.: Waste collection: equipment and vehicles. Solid Waste Technol. Manage. 1 and 2, 251–76 (2010)
Google Scholar
Environmental Protection Agency: Municipal Waste Characterisation. Wexford, Ireland (1996)
Google Scholar
Fitzgerald, G.C., Themelis, N.: Technical and economic analysis of pre-shredding municipal solid wastes prior to disposal. Unpublished MS thesis Columbia University, New York (2009)
Google Scholar
Cheremisinoff, N.P.: Handbook of Solid Waste Management and Waste Minimization Technologies. Butterworth, Heinemann (2003)
Google Scholar
Ramachandra, T.: Management of Municipal Solid Waste. Environmental Engineering Series, The Energy and Resources Institute (TERI) (2006)
Google Scholar
Cimpan, C., Maul, A., Jansen, M., Pretz, T., Wenzel, H.: Central sorting and recovery of MSW recyclable materials: a review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manage. 156, 181–199 (2015)
CAS
CrossRef
Google Scholar
Gonzalez-Torre, P.L., Adenso-Dıaz, B., Ruiz-Torres, A.: Some comparative factors regarding recycling collection systems in regions of the USA and Europe. J. Environ. Manage. 69, 129–138 (2003)
CrossRef
Google Scholar
Gundupalli, S.P., Hait, S., Thakur, A.: A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manage. 60, 56–74 (2017)
CrossRef
Google Scholar
Shao, L.-M., Ma, Z.-H., Zhang, H., Zhang, D.-Q., He, P.-J.: Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Manage. 30, 1165–1170 (2010)
CAS
CrossRef
Google Scholar
Chandrappa, R., Das, D.B.: Waste quantities and characteristics. Solid Waste Management, pp. 47–63. Springer, Berlin, Heidelberg (2012)
CrossRef
Google Scholar
Perazzini, H., Freire, F.B., Freire, F.B., Freire, J.T.: Thermal treatment of solid wastes using drying technologies: a review. Dry Technol. 34, 39–52 (2016)
CrossRef
Google Scholar
McCormick, P., Porter, H., Lucas, R., Wells, D.: Solids drying fundamentals. In: Chemical Engineers Handbook, 5th edn. pp. 20–4. Mc Graw-Hill Co, New York (1983)
Google Scholar
Mujumdar, A.S.: Principles, classification, and selection of dryers. In Handbook of Industrial Drying 4th edn, pp. 3–29. CRC Press, Boca Raton, FL (2015)
Google Scholar
Velis, C., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.: Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering. Bioresource Technol. 100, 2747–2761 (2009)
CAS
CrossRef
Google Scholar
Ragazzi, M., Rada, E., Panaitescu, V., Apostol, T.: Municipal solid waste pre-treatment: a comparison between two dewatering options. WIT Trans. Ecol. Environ. 102 (2007)
Google Scholar
Phuntsho, S., Dulal, I., Yangden, D., Tenzin, U.M., Herat, S., Shon, H.: Studying municipal solid waste generation and composition in the urban areas of Bhutan. Waste Manage. Res. 28, 545–551 (2010)
CrossRef
Google Scholar
Sfeir, H., Reinhart, D.R., McCauley-Bell, P.R.: An evaluation of municipal solid waste composition bias sources. J. Air Waste Manag. Assoc. 49, 1096–1102 (1999)
CrossRef
Google Scholar
Burnley, S., Ellis, J., Flowerdew, R., Poll, A., Prosser, H.: Assessing the composition of municipal solid waste in Wales. Resour. Conserv. Recycl. 49, 264–283 (2007)
CrossRef
Google Scholar
Scott, P.: The international energy agency’s (IEA) work in harmonising sampling and analytical protocols related to municipal solid waste (MSW) conversion to energy. Biomass Bioenerg. 9, 415–439 (1995)
CAS
CrossRef
Google Scholar
Worrell, W.A., Vesilind, P.A.: Solid Waste Engineering, Cengage Learning, SI Version (2011)
Google Scholar
den Boer, E., Jędrczak, A., Kowalski, Z., Kulczycka, J., Szpadt, R.: A review of municipal solid waste composition and quantities in Poland. Waste Manag 30, 369–377 (2010)
CrossRef
CAS
Google Scholar
Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K. (eds.): IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme of the Intergovernmental Panel on Climate Change. IGES, Japan (2006)
Google Scholar
Zhang, D.Q., Tan, S.K., Gersberg, R.M.: Municipal solid waste management in China: status, problems and challenges. J. Environ. Manage. 9, 1623–1633 (2010)
CrossRef
CAS
Google Scholar
ASTM. Standard Test Method for Measuring Particle Size Distribution of RDF-5. United States: American Society for Testing and Materials, E1037–15 (2017)
Google Scholar
Zhou, H., Meng, A., Long, Y., Li, Q., Zhang, Y.: An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renew. Sustain. Energy Rev. 36, 107–122 (2014)
CAS
CrossRef
Google Scholar
ASTM. Standard Test Method for Determining the Bulk Density of Solid Waste Fractions. United States: American Society for Testing and Materials, E 1109–86 (2004)
Google Scholar
Ruf, J.A.: Particle size spectrum and compressibility of raw and shredded municipal solid waste, University of Florida (1974)
Google Scholar
EPA: Volume-to-Weight Conversion Factors. US: Office of Resource Conservation and Recovery (2016)
Google Scholar
EPA: Waste Materials—Density Data. http://www.epa.vic.gov.au/business-and-industry/lower-your-impact/~/media/Files/bus/EREP/docs/wastematerials-densities-data.pdf
Pichtel, J.: Waste Management Practices: Municipal, Hazardous, and Industrial. CRC press (2005)
Google Scholar
Vesilind, P.A., Worrell, W.A., Reinhart, R.: Solid Waste Engineering, India Library (2002)
Google Scholar
Zekkos, D., Fei, X., Grizi, A., Athanasopoulos, G.: Response of municipal solid waste to mechanical compression. J. Geotech. Geoenviron. Eng. 143, 04016101 (2016)
CrossRef
Google Scholar
Hossain, M., Gabr, M., Barlaz, M.: Relationship of compressibility parameters to municipal solid waste decomposition. J. Geotech. Geoenviron. Eng. 129, 1151–1158 (2003)
CrossRef
Google Scholar
Oweis, I.S., Khera, R.P.: Geotechnology of waste management (1990)
Google Scholar
ASTM: standard test methods for one-dimensional consolidation properties of soils using incremental loading. united states: american society for testing and materials, D2435/D2435M-1 (2011)
Google Scholar
Zhang, Z., Dazhi, W.: Study on the compressibility of municipal solid waste in Hangzhou, China. In: International Conference on Mechanic Automation and Control Engineering (MACE): IEEE, pp. 1566–8 (2010)
Google Scholar
Zhang, Z., Dazhi, W.: Study on the compressibility for municipal solid waste with higher content of organic matter. In: 2nd International Conference on Information Science and Engineering (ICISE): IEEE, pp. 4078–81 (2010)
Google Scholar
Chen, Y., Ke, H., Fredlund, D.G., Zhan, L., Xie, Y.: Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 136, 706–717 (2010)
CAS
CrossRef
Google Scholar
Gourc, J.-P., Staub, M., Conte, M.: Decoupling MSW settlement into mechanical and biochemical processes–modelling and validation on large-scale setups. Waste Manage. 30, 1556–1568 (2010)
CAS
CrossRef
Google Scholar
Bareither, C.A., Benson, C.H., Edil, T.B.: Recent findings on compressibility of municipal solid waste. GeoCongress State Art Pract. Geotech. Eng. 2012, 4212–4221 (2012)
Google Scholar
Hossain, M.S., Gabr, M., Asce, F.: The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste. Waste Manage. 29, 2417–2424 (2009)
CAS
CrossRef
Google Scholar
ASTM: Standard test method for permeability of granular soils (Constant Head). American Society for Testing and Materials, United States, D2434-68 (2006)
Google Scholar
Taufiq, T.: Characteristics of fresh municipal solid waste: The University of Texas at Arlington (2010)
Google Scholar
Chen, T.-H., Chynoweth, D.P.: Hydraulic conductivity of compacted municipal solid waste. Bioresour. Technol. 51, 205–212 (1995)
CAS
CrossRef
Google Scholar
Hossain, M.S., Penmethsa, K.K., Hoyos, L.: Permeability of municipal solid waste (MSW) in bioreactor landfill with degradation. GeoCongress 2008: Geotechnics of Waste Management and Remediation. pp. 120–7 (2008)
Google Scholar
Dixon, N., Jones, D.R.V.: Engineering properties of municipal solid waste. Geotext. Geomembr. 23, 205–233 (2005)
CrossRef
Google Scholar
Ivanov, K.; Zaprjanova, P.; Angelova, V.; Bekjarov, G.; Dospatliev, L.; Gilkes, R. J.; Prakongkep, N.: ICP determination of phosphorous in soils and plants. In: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010. Working Group 1.5 Soil sense: rapid soil measurements (2010)
Google Scholar
Yang, N.: Environmental analysis of municipal solid waste landfilling in China based on life cycle perspective. Ph.D. Thesis, Shanghai: Tongji university (2014)
Google Scholar
Kim, M.H., Kim, J.W.: Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 408(19), 3998–4006 (2010)
CAS
CrossRef
Google Scholar
Faaij, A., van Ree, R., Waldheim, L., Olsson, E., Oudhuis, A., van Wijk, A., DaeyOuwens, C., Turkenburg, W.: Gasification of biomass wastes and residues for electricity production. Biomass Bioenerg. 12(6), 387–407 (1997)
CrossRef
Google Scholar
Zhang, Y., Banks, C.J., Heaven, S.: Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manage. 104, 166–174 (2012)
CAS
CrossRef
Google Scholar
Yang, N., Damgaard, A., Scheutz, C., Shao, L.M., He, P.J.: A comparison of chemical MSW compositional data between China and Denmark. J. Environ. Sci. 74, 1–10 (2018)
CrossRef
Google Scholar
Soest, P.J.V.: Development of a comprehensive system of feed analyzes and its application to forages. J. Anim. 26(1), 119–128 (1967)
CrossRef
Google Scholar
Van Soest, P.J.: Use of detergents in the analyzis of fibrous feeds. 2. A rap-id method for the determination of fiber and lignin. J. Assoc. Off. Anal. Chem. 49, 546–551 (1963)
Google Scholar
Provenzano, M.R., Malerba, A.D., Pezzolla, D., Gigliotti, G.: Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Manage. 34(3), 653–660 (2014)
CAS
CrossRef
Google Scholar
Machado, S.L., Carvalho, M.F., Gourc, J.P., Vilar, O.M., Nascimento, J.C.F.D.: Methane generation in tropical landfills: simplified methods and field results. Waste Manage. 29(1), 153–161 (2009)
CAS
CrossRef
Google Scholar
Huang, Q., Wang, Q., Dong, L., Xi, B., Zhou, B.: The current situation of solid waste management in China. J. Mater. Cycles Waste Manage. 8(1), 63–69 (2006)
CrossRef
Google Scholar
M, B.: Regional study on policies and institutional assessment of solid waste management in Egypt, France: Blue Plan Regional Activity Centre (2000)
Google Scholar
Unnikrishnan, S., Singh, A.: Energy recovery in solid waste management through CDM in India and other countries. Resour. Conserv. Recycl. 54(10), 630–640 (2010)
CrossRef
Google Scholar
EPA: Municipal solid waste in The United States: 2011 facts and figures. Environmental Protection Agency, U.S.A. (2013)
Google Scholar
ABS: Australia’s environment: issues and trends. Australian Bureau of Statistic, Australia (2003)
Google Scholar
OECD: OECD environmental data compendium. Environment Directorate, France, 2006/2007
Google Scholar
DEFRA: Municipal waste composition: review of municipal waste component analyzes—final report, London: Department for Environment Food and Rural Affairs (2008)
Google Scholar
Mühle, S., Balsam, I., Cheeseman, C.R.: Comparison of carbon emissions associated with municipal solid waste management in Germany and the UK. Resour. Conserv. Recycl. 54(11), 793–801 (2010)
CrossRef
Google Scholar
Eleazer, W.E., Odle, W.S., Wang, Y.S., Barlaz, M.A.: Biodegradability of municipal solid waste components in laborato-ry-scale landfills. Environ. Sci. Technol. 31(3), 911–917 (1997)
CAS
CrossRef
Google Scholar
Chan, C., Jia, C.Q., Graydon, J.W., Kirk, D.W.: The behaviour of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents. J. Hazard. Mater. 50(1), 1–13 (1996)
CAS
CrossRef
Google Scholar
Krogmann, U.: Composting–basics of collection and treatment of biogenic wastes of different compositions. Economica-Verlag, Germany (1994)
Google Scholar
Badami, M., Mittica, A., Poggio, A.: MSW incineration capacity evaluations for the province of Turin (Northen Italy). Ann. N. Y. Acad. Sci. 456(12), 436–437 (2008)
Google Scholar
Zheng, W., Phoungthong, K., Lü, F., Shao, L.M., He, P.J.: Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manage. 33(12), 2632–2640 (2013)
CAS
CrossRef
Google Scholar
Saikia, N., Cornelis, G., Mertens, G., Elsen, J., Van Balen, K., Van Gerven, T., Vandecasteele, C.: Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar. J. Hazard. Mater. 154(1–3), 766–777 (2008)
CAS
CrossRef
Google Scholar
Qiang, L.S., Zhao, J.P., Yang, Y.L.: Preparation and characterization of novel functional materials. Harbin Institute of Technology Press, Harbin (2017)
Google Scholar
Qiu, P.S., Wang, G.F., Guo, L.W.: Material modern analysis test method experiment guide. Harbin Institute of Technology Press, Harbin (2001)
Google Scholar
Ji, T.D., Lin, Z.R., Guo, L.W.: Secondary Ion Mass Spectrometry and Ion Probes. Science Press, Beijing (1989)
Google Scholar
Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P.: Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. J. Hazard. Mater. 70(1–2), 53–70 (1999)
CAS
CrossRef
Google Scholar
Rémond, S., Pimienta, P., Bentz, D.P.: Effects of the incorporation of municipal solid waste incineration fly ash in cement pastes and mortars: I. Exp. Study. Cem. Concr. Res. 32(2), 303–311 (2002)
CrossRef
Google Scholar
Müller, U., Rübner, K.: The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem. Concr. Res. 36(8), 1434–1443 (2006)
CrossRef
CAS
Google Scholar
Bethanis, S., Cheeseman, C.R., Sollars, C.J.: Properties and micro-structure of sintered incinerator bottom ash. Ceram. Int. 28(8), 881–886 (2002)
CAS
CrossRef
Google Scholar
Hass, A., Fine, P.: Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials-a Critical Review. Crit.Al Rev. Environ. Sci. Technol. 40(5), 365–399 (2010)
CAS
CrossRef
Google Scholar
Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7), 844–851 (1979)
CAS
CrossRef
Google Scholar
Ure, A.M., Quevauviler, P.H., Muntau, H., Griepink, B.: Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 51, 135–151 (1994)
CrossRef
Google Scholar
Kersten, M., Schulz, B.: Speciation of Cr in leachates of a MSWI bottom ash landfill. Environ. Sci. Technol. 32, 1398–1403 (1998)
CAS
CrossRef
Google Scholar
Krishnamurti, G.S., Naidu, R.: Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ. Sci. Technol. 36(12), 2645–2651 (2002)
CAS
CrossRef
Google Scholar
Pan, Y., Wu, Z., Zhou, J., Zhao, J., Ruan, X., Liu, J., Qian, G.: Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J. Hazard. Mater. 261, 269–276 (2013)
CAS
CrossRef
Google Scholar
Luan, J., Chai, M., Liu, Y., Ke, X.: Heavy-metal speciation redistribution in solid phase and potential environmental risk assessment during the conversion of MSW incineration fly ash into molten slag. Environ. Sci. Pollut. Res. 25(4), 3793–3801 (2018)
CAS
CrossRef
Google Scholar
Yu, J., Sun, L., Xiang, J., Jin, L., Hu, S., Su, S., Qiu, J.: Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Manage. Res. 31(7), 663–673 (2013)
CAS
CrossRef
Google Scholar
Jiao, F., Zhang, L., Dong, Z., Namioka, T., Yamada, N., Ninomiya, Y.: Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. Fuel Process. Technol. 152, 108–115 (2016)
CAS
CrossRef
Google Scholar
Saqib, N., Bäckström, M.: Chemical association and mobility of trace elements in 13 different fuel incineration fly ashes. Fuel 165, 193–204 (2016)
CAS
CrossRef
Google Scholar
Yao, J., Li, W.B., Kong, Q.N., Wu, Y.Y., He, R., Shen, D.S.: Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel 89(3), 616–622 (2010)
CAS
CrossRef
Google Scholar
Soil, sludge and treated biowaste—Determination of pH. https://horizontal.ecn.nl
Sun, C.Y., Wen, C.X., Liu, X.L., Liu, B.: Effects of initial pH on anaerobic digestion of biogas from domestic refuse and sludge mixtures. Chin. J. Agric. Technol. 9, 194–196 (2012)
Google Scholar
Liu, Q., Sun, Y.H., Kou, W., Cao, Y.X.: Compositions analyzis and an-aerobic digestion characteristics on seasonal municipal solid waste. Chin. J. Environ. Eng. 11, 4507–4512 (2013)
Google Scholar
Yue, B., Zhang, Z.B., Huang, Q.F., Li, H.: Study on the physico-chemical properties of living solid waste in several typical villages and towns in China. Environ. Eng. 7, 105–110 (2014)
Google Scholar
Medina-Salasa, L.D., Castillo-Gonzáleza, E., Romero-Lópezb, R.: Physical and chemical characteristics of municipal solid waste in a rural locality-study case: cosautlán de carvajal, Veracruz, Mexico. Int. J. Bus. Hum. Ities Technol. 31(8), 117–122 (2013)
Google Scholar
Zhang, A.P., Li, M., Chen, Y.M., Hu, L.Z.: Study on characteristics, peasants’ awareness and disposal mode of rural household solid waste around Chengdu. Environ. Pollut. Control. 3, 307–313 (2017)
Google Scholar
Chen, S.H., Zhang, S.M.: Municipal Waste Compost Management and Technology. Fudan University Press, Shanghai (1990)
Google Scholar
Wei, Z.M., Wang, S.P., Xi, B.D., Zhao, Y.: Changes of humic substances and organic nitrogen forms during municipal solid waste composting. Acta Sci. Circum. 2, 235–240 (2007)
Google Scholar
Lv, B., Pu, G.B.: Study on transformation behavior of nitrogen in an-aerobic digestion of municipal solid waste. Chem. Biol. Eng. 9, 77–81 (2010)
Google Scholar
EPA: Liquid-solid partitioning as a function of liquid-solid ratio for constituents in solid materials using an up-flow percolation column procedure. Environmental Protection Agency, U.S.A. (2009)
Google Scholar
EPA: Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure. U.S.A.: Environmental Protection Agency (2017)
Google Scholar
EPA: Liquid-solid partitioning as a function of liquid-to-solid ratio in solid materials using a parallel batch procedure. U.S.A.: Environmental Protection Agency (2012)
Google Scholar
Gawlik, B., van der Sloot, H., Ulberth, F., Nortcliff, S., Simonart, T., Cooper, B., Leschber, R., Andersen, K., Wichman, K.: On the development of horizontal CEN standards supporting the implementation of EU directives on sludge, soil and biowaste—project horizontal. TracTrends Anal. Chem. 23(10–11), 686–703 (2004)
CAS
CrossRef
Google Scholar
Chinese Standard: Solid waste-extraction procedure for leaching toxicity-sulphuric acid and nitric acid method HJT299–2007 (2007)
Google Scholar
Chinese Standard: Solid waste-extraction procedure for leaching toxicity-acetic acid buffer solution method HJ/T300-2007 (2007)
Google Scholar
Chinese Standard: Solid waste-Extraction procedure for leaching toxicity-Horizontal vibration method HJ 557-2010 (2010)
Google Scholar
Liu, H.H., Sang, S.X., Zhou, X.Z., Lian, C.X.: Leaching characteristics of heavy metals in municipal solid waste under simulated rain. Geochimica 6, 587–594 (2008)
Google Scholar
He, P.J., H., Zhang, H., Wang, Z.D., Zhang, C.G.: Pollution characteristics of air pollution control residues from municipal solid waste incineration plant. J. Tongji Univ. (Nat. Sci.) 31(8), 972–976 (2003)
Google Scholar
Shen, D.S., Zhen, Y.G., Yao, J., Wang, M.Z., Zhang, Y.: Analysis of pollution characteristics of solid waste incinerator fly ash in Zhejiang province. Chin. J. Environ. Sci. 9, 2610–2616 (2011)
Google Scholar
Zhang, H., Yu, S.Y., Shao, L.M., He, P.J.: Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators. Chin. J. Environ. Sci. 1, 467–476 (2018)
Google Scholar
Yu, L., Xie, Y.D., Ji, H.B., Pang, X.L., Liu, J.S.: Leaching tests of domestic garbage slag heavy metals under different pH. Environ. Sci. Manag. 1, 111–114 (2016)
Google Scholar
ASTM: Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM D3173/D3173M-17a (2011)
Google Scholar
ISO: Solid mineral fuels—Hard coal—Determination of moisture in the general analysis test sample by drying in nitrogen. ISO 11722:2013 (2013)
Google Scholar
AS: Coal and coke—Analysis and testing Proximate analysis of higher rank coal. AS 1038.3 (2000)
Google Scholar
ASTM: Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM D4239-14 (2014)
Google Scholar
ISO: Solid mineral fuels—Determination of total sulfur—High temperature combustion method. ISO 351:1996 (1996)
Google Scholar
AS: Coal and coke—Analysis and testing Higher rank coal and coke—Ultimate analysis—Total sulfur—High-temperature combustion method. AS 1038.6.3.2-2003 (R2013)
Google Scholar
ASTM: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM D3175-18 (2018)
Google Scholar
ISO: Hard coal and coke—Determination of volatile matter. ISO 562:2010 (2010)
Google Scholar
ASTM: Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. ASTM D5142-09 (2009)
Google Scholar
ISO: Coal—Proximate analysis. ISO 17246:2010 (2010)
Google Scholar
AS: Coal and coke—Analysis and testing Proximate analysis of higher rank coal. AS 1038.3-2000 (2000)
Google Scholar
ASTM: Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal. ASTM D5373-08 (2008)
Google Scholar
ASTM: Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM D3174-12(2018)
Google Scholar
ASTM: Standard Test Method for Gross Calorific Value of Coal and Coke. D5865-13 (2013)
Google Scholar
ISO: Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. ISO 1928 (2009)
Google Scholar
AS: Coal and coke-Analysis and testing Gross calorific value. AS1038.5 (1998)
Google Scholar
Kathiravale, S., Yunus, M.N.M., Sopian, K., Samsuddin, A.H., Rah-man, R.A.: Modeling the heating value of municipal solid waste. Fuel 82(9), 1119–1125 (2003)
CAS
CrossRef
Google Scholar
Dean, W.: Determination of carbonate and organic matter in calcareous, sediments and sedimentary rock by loss on ignition: comparison with other methods. J. Sediment. Petrol. 44, 242–248 (1974)
CAS
Google Scholar
Eli, SF., Benjamin, C.: The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem. 62, 394–397 (1958)
CAS
CrossRef
Google Scholar
Stanier, D.: An introduction to differential scanning calorimetry (2013)
Google Scholar
Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N.: ICTAC kinetics committee recommendations for performing kinetic computations on thermal analyzis data. Thermochim. Acta 520(1–2), 1–19 (2011)
CAS
CrossRef
Google Scholar
Anderson, M.B.: Composition of municipal solid waste in the united states and implications for carbon sequestration and methane yield. J. Environ. Eng. 135(10), 901–909 (2009)
CrossRef
CAS
Google Scholar
Painter, R., Watson, W.: Tennessee waste characterization study, pp. 16–20. Tennessee State University Department of Civil and Environmental Engineering, Tennessee (2008)
Google Scholar
Yamada, T., Asari, M., Miura, T.: Municipal solid waste composition and food loss reduction in Kyoto City. J. Mater. Cycles Waste Manage. 3, 1–10 (2017)
Google Scholar
Zhang, D., Keat, T.S., Gersberg, R.M.: A comparison of municipal solid waste management in Berlin and Singapore. Waste Manage. 30(5), 921 (2010)
CrossRef
Google Scholar
Alwaeli, M.: An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng. 4, 181–193 (2015)
Google Scholar
Sharholy, M., Ahmad, K., Vaishya, R.C.: Municipal solid waste characteristics and management in Allahabad. India. Waste Manage. 27(4), 490 (2007)
CrossRef
Google Scholar
Tan, S.T., Lee, C.T., Hashim, H.: Optimal process network for municipal solid waste management in Iskandar Malaysia. J. Clean. Prod. 71(4), 48–58 (2014)
CrossRef
Google Scholar
Hussain, M., Haider, S., Abbas, Y.: A study of source specific quantification, composition and disposal methods of municipal solid waste at Konodas Gilgit City, Pakistan. J. Biodivers. Environ. Sci. 8(5), 20162222–20166663 (2016)
Google Scholar
Inglezakis, V., Dvorsak, S., Varga, J.: Municipal solid waste experimental studies in Romania and Bulgaria. Cogenttech 3(3), 64–73 (2012)
Google Scholar
Montejo, C., Costa, C., Ramos, P.: Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants. Appl. Therm. Eng. 31(13), 2135–2140 (2011)
CAS
CrossRef
Google Scholar
Ersoy, H., Bulut, F., Ersoy, A.F.: Municipal solid waste management and practices in coastal cities of the Eastern Black Sea: a case study of Trabzon City, NE Turkey. Bull. Eng. Geol. Env. 67(3), 321–333 (2008)
CrossRef
Google Scholar
Burnley, S.J., Ellis, J.C., Flowerdew, R.: Assessing the composition of municipal solid waste in Wales. Resour. Conserv. Recycl. 49(3), 264–283 (2007)
CrossRef
Google Scholar
Abdalqader, A., Hamad, J.: Municipal solid waste composition determination supporting the integrated solid waste management in Gaza strip. Int. J. Environ. Sci. Dev. 3(2), 172–176 (2012)
CrossRef
Google Scholar
Peng, Z., Peng, L., Zhang, X.: Study on the composition and physical characteristics of municipal solid waste in Chongqing. Environ. Sci. Manag. 39(2), 14–17 (2014). (in Chinese)
Google Scholar
Wang, Y., Dong, X., Zhang, Y.: Analyzis on the characteristics of municipal solid waste in tangshan. J. Tangshan Coll.E 20(6), 62–63 (in Chinese) (2007)
Google Scholar
Dan, Z., Han, Z.: Study on the characteristics of municipal solid waste in tibetan plateau area at the dry season. China Biogas 30(6), 33–36 (2012). (in Chinese)
Google Scholar
Tao, X., Huang, T., Yang, H.: Investigation and analysis of municipal solid waste in downtown area of Chengdu. Guangdong Agric. Sci. (1), 94–96 (2009). (in Chinese)
Google Scholar
Huang C.: Statistical study on physical and chemical components of municipal solid waste in Shenzhen. Huazhong University of Science and Technology (2012). (in Chinese)
Google Scholar
Moradian, F., Pettersson, A., Richards, T.: A thermodynamic equilibrium model applied to predict the fouling tendency in a commercial fluidized-bed boiler, combusting solid waste. Energy Fuels 150422082504003 (2015)
Google Scholar
Moradian, F., Pettersson, A., Richards, T.: Bed agglomeration characteristics during cocombustion of animal waste with municipal solid waste in a bubbling fluidized-bed boiler-A thermodynamic modeling approach. Energy Fuels 28(3), 2236–2247 (2014)
CAS
CrossRef
Google Scholar
Ma, W.: Thermal behavior of chlorine during municipal solid waste combustion. Tianjin University (2010). (in Chinese)
Google Scholar
Tang, L.: Study on the properties of pyrolysis products and elements distribution during Municipal Solid Waste pyrolysis. Chongqing University (2015). (in Chinese)
Google Scholar
Wang, X., Jiao, Y., Jin, B., Xu, B., Wu, J.: The effect of SiO2 addictive on melting characteristics of MSW incineration fly ash. Power Syst. Eng. 5, 17–20 (2007). (in Chinese)
Google Scholar
Xu, M.: The experimental study on ash sintering characteristics of heated surface on MSW incineration. Zhejiang University (2007)
Google Scholar
Chen, B.-Y., Lin, K.-L.: Biotoxicity assessment on reusability of municipal solid waste incinerator (MSWI) ash. J. Hazard. Mater. B136, 741–746 (2006)
CrossRef
CAS
Google Scholar
Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015)
CAS
CrossRef
Google Scholar
Shi, H., Mahinpey, N., Aqsha, A.: Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Manag 48, 34–47 (2015)
CrossRef
CAS
Google Scholar
Sørum, L., Grønli, M.G., Hustad, J.E.: Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80(9), 1217–1227 (2000)
CrossRef
Google Scholar