Skip to main content

Municipal Solid Waste

Abstract

In this chapter, the sampling, preconditioning, as well as physico-chemical, biochemical and thermal characterization methods for municipal solid waste are introduced. The typical equipment used in the sample preparation and characterization are illustrated. Furthermore, an overview of the characteristics of municipal solid waste is presented which provides a useful starting database.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-35020-8_6
  • Chapter length: 110 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-35020-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 6.1

Reprinted with permission from Elsevier [17]

Fig. 6.2

Reprinted with permission from Elsevier [19]

Fig. 6.3

Reprinted with permission from Elsevier [19]

Fig. 6.4

Reprinted with permission from Elsevier [19]

Fig. 6.5

Reprinted with permission from Elsevier [19]

Fig. 6.6

Reprinted with permission from Taylor and Francis [22]

Fig. 6.7

Reprinted with permission from Elsevier [25]

Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12
Fig. 6.13
Fig. 6.14
Fig. 6.15
Fig. 6.16
Fig. 6.17
Fig. 6.18
Fig. 6.19

References

  1. U.S. EPA (U.S. Environmental Protection Agency): Quantity of municipal solid waste generated and managed. EPA’s Report on the Environment (ROE). https://cfpub.epa.gov/roe/indicator.cfm?i=53. Accessed Oct 2016

  2. Fischer, C., Crowe, M.: Household and Municipal Waste: Comparability of Data in Eea Member Countries. European Environment Agency, Copenhagen, Denmark (2000)

    Google Scholar 

  3. Sahimaa, O., Hupponen, M., Horttanainen, M., Sorvari, J.: Method for residual household waste composition studies. Waste Manage. 46, 3–14 (2015)

    CrossRef  Google Scholar 

  4. Edjabou, M.E., Jensen, M.B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., Astrup, T.F.: Municipal solid waste composition: Sampling methodology, statistical analyzes, and case study evaluation. Waste Manage. 36, 12–23 (2015)

    CrossRef  Google Scholar 

  5. Liikanen, M., Sahimaa, O., Hupponen, M., Havukainen, J., Sorvari, J., Horttanainen, M.: Updating and testing of a Finnish method for mixed municipal solid waste composition studies. Waste Manage. 52, 25–33 (2016)

    CAS  CrossRef  Google Scholar 

  6. Zettl, E., Milunov, M., Potrykus, A., Kostadinova, T.: Waste Classification, Sampling and Analyzis. Federal Environment Agency, Germany (2015)

    Google Scholar 

  7. U.S. EPA (U.S. Environmental Protection Agency). MSW Characterization Methodology. https://www.epa.gov/sites/production/files/2015-09/documents/06numbers.pdf. Accessed Sep 2015

  8. Nordtest Method. Solid waste, municipal: sampling and characterisation. Nordtest method NT ENVIR, Finland. http://www.nordtest.info/images/documents/nt-methods/environment/NT%20envir%20001_Solid%20waste,%20municipal_Sampling%20and%20characterisation_Nordtest%20Method.pdf. Accessed May 1995

  9. Haque, M.: Sampling methods in social research. Ph.D. Scholar, Visva Bharati, Santiniketan, West Bangal (2010)

    Google Scholar 

  10. Dodd, S.-J., Epstein, I.: Practice-based Research in Social Work: A Guide for Reluctant Researchers. Routledge, New York (2012)

    CrossRef  Google Scholar 

  11. Dahlén, L., Lagerkvist, A.: Methods for household waste composition studies. Waste Manage. 28, 1100–1112 (2008)

    CrossRef  Google Scholar 

  12. Nilsson, P.: Waste collection: equipment and vehicles. Solid Waste Technol. Manage. 1 and 2, 251–76 (2010)

    Google Scholar 

  13. Environmental Protection Agency: Municipal Waste Characterisation. Wexford, Ireland (1996)

    Google Scholar 

  14. Fitzgerald, G.C., Themelis, N.: Technical and economic analysis of pre-shredding municipal solid wastes prior to disposal. Unpublished MS thesis Columbia University, New York (2009)

    Google Scholar 

  15. Cheremisinoff, N.P.: Handbook of Solid Waste Management and Waste Minimization Technologies. Butterworth, Heinemann (2003)

    Google Scholar 

  16. Ramachandra, T.: Management of Municipal Solid Waste. Environmental Engineering Series, The Energy and Resources Institute (TERI) (2006)

    Google Scholar 

  17. Cimpan, C., Maul, A., Jansen, M., Pretz, T., Wenzel, H.: Central sorting and recovery of MSW recyclable materials: a review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manage. 156, 181–199 (2015)

    CAS  CrossRef  Google Scholar 

  18. Gonzalez-Torre, P.L., Adenso-Dıaz, B., Ruiz-Torres, A.: Some comparative factors regarding recycling collection systems in regions of the USA and Europe. J. Environ. Manage. 69, 129–138 (2003)

    CrossRef  Google Scholar 

  19. Gundupalli, S.P., Hait, S., Thakur, A.: A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manage. 60, 56–74 (2017)

    CrossRef  Google Scholar 

  20. Shao, L.-M., Ma, Z.-H., Zhang, H., Zhang, D.-Q., He, P.-J.: Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery. Waste Manage. 30, 1165–1170 (2010)

    CAS  CrossRef  Google Scholar 

  21. Chandrappa, R., Das, D.B.: Waste quantities and characteristics. Solid Waste Management, pp. 47–63. Springer, Berlin, Heidelberg (2012)

    CrossRef  Google Scholar 

  22. Perazzini, H., Freire, F.B., Freire, F.B., Freire, J.T.: Thermal treatment of solid wastes using drying technologies: a review. Dry Technol. 34, 39–52 (2016)

    CrossRef  Google Scholar 

  23. McCormick, P., Porter, H., Lucas, R., Wells, D.: Solids drying fundamentals. In: Chemical Engineers Handbook, 5th edn. pp. 20–4. Mc Graw-Hill Co, New York (1983)

    Google Scholar 

  24. Mujumdar, A.S.: Principles, classification, and selection of dryers. In Handbook of Industrial Drying 4th edn, pp. 3–29. CRC Press, Boca Raton, FL (2015)

    Google Scholar 

  25. Velis, C., Longhurst, P.J., Drew, G.H., Smith, R., Pollard, S.J.: Biodrying for mechanical–biological treatment of wastes: a review of process science and engineering. Bioresource Technol. 100, 2747–2761 (2009)

    CAS  CrossRef  Google Scholar 

  26. Ragazzi, M., Rada, E., Panaitescu, V., Apostol, T.: Municipal solid waste pre-treatment: a comparison between two dewatering options. WIT Trans. Ecol. Environ. 102 (2007)

    Google Scholar 

  27. Phuntsho, S., Dulal, I., Yangden, D., Tenzin, U.M., Herat, S., Shon, H.: Studying municipal solid waste generation and composition in the urban areas of Bhutan. Waste Manage. Res. 28, 545–551 (2010)

    CrossRef  Google Scholar 

  28. Sfeir, H., Reinhart, D.R., McCauley-Bell, P.R.: An evaluation of municipal solid waste composition bias sources. J. Air Waste Manag. Assoc. 49, 1096–1102 (1999)

    CrossRef  Google Scholar 

  29. Burnley, S., Ellis, J., Flowerdew, R., Poll, A., Prosser, H.: Assessing the composition of municipal solid waste in Wales. Resour. Conserv. Recycl. 49, 264–283 (2007)

    CrossRef  Google Scholar 

  30. Scott, P.: The international energy agency’s (IEA) work in harmonising sampling and analytical protocols related to municipal solid waste (MSW) conversion to energy. Biomass Bioenerg. 9, 415–439 (1995)

    CAS  CrossRef  Google Scholar 

  31. Worrell, W.A., Vesilind, P.A.: Solid Waste Engineering, Cengage Learning, SI Version (2011)

    Google Scholar 

  32. den Boer, E., Jędrczak, A., Kowalski, Z., Kulczycka, J., Szpadt, R.: A review of municipal solid waste composition and quantities in Poland. Waste Manag 30, 369–377 (2010)

    CrossRef  CAS  Google Scholar 

  33. Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K. (eds.): IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme of the Intergovernmental Panel on Climate Change. IGES, Japan (2006)

    Google Scholar 

  34. Zhang, D.Q., Tan, S.K., Gersberg, R.M.: Municipal solid waste management in China: status, problems and challenges. J. Environ. Manage. 9, 1623–1633 (2010)

    CrossRef  CAS  Google Scholar 

  35. ASTM. Standard Test Method for Measuring Particle Size Distribution of RDF-5. United States: American Society for Testing and Materials, E1037–15 (2017)

    Google Scholar 

  36. Zhou, H., Meng, A., Long, Y., Li, Q., Zhang, Y.: An overview of characteristics of municipal solid waste fuel in China: physical, chemical composition and heating value. Renew. Sustain. Energy Rev. 36, 107–122 (2014)

    CAS  CrossRef  Google Scholar 

  37. ASTM. Standard Test Method for Determining the Bulk Density of Solid Waste Fractions. United States: American Society for Testing and Materials, E 1109–86 (2004)

    Google Scholar 

  38. Ruf, J.A.: Particle size spectrum and compressibility of raw and shredded municipal solid waste, University of Florida (1974)

    Google Scholar 

  39. EPA: Volume-to-Weight Conversion Factors. US: Office of Resource Conservation and Recovery (2016)

    Google Scholar 

  40. EPA: Waste Materials—Density Data. http://www.epa.vic.gov.au/business-and-industry/lower-your-impact/~/media/Files/bus/EREP/docs/wastematerials-densities-data.pdf

  41. Pichtel, J.: Waste Management Practices: Municipal, Hazardous, and Industrial. CRC press (2005)

    Google Scholar 

  42. Vesilind, P.A., Worrell, W.A., Reinhart, R.: Solid Waste Engineering, India Library (2002)

    Google Scholar 

  43. Zekkos, D., Fei, X., Grizi, A., Athanasopoulos, G.: Response of municipal solid waste to mechanical compression. J. Geotech. Geoenviron. Eng. 143, 04016101 (2016)

    CrossRef  Google Scholar 

  44. Hossain, M., Gabr, M., Barlaz, M.: Relationship of compressibility parameters to municipal solid waste decomposition. J. Geotech. Geoenviron. Eng. 129, 1151–1158 (2003)

    CrossRef  Google Scholar 

  45. Oweis, I.S., Khera, R.P.: Geotechnology of waste management (1990)

    Google Scholar 

  46. ASTM: standard test methods for one-dimensional consolidation properties of soils using incremental loading. united states: american society for testing and materials, D2435/D2435M-1 (2011)

    Google Scholar 

  47. Zhang, Z., Dazhi, W.: Study on the compressibility of municipal solid waste in Hangzhou, China. In: International Conference on Mechanic Automation and Control Engineering (MACE): IEEE, pp. 1566–8 (2010)

    Google Scholar 

  48. Zhang, Z., Dazhi, W.: Study on the compressibility for municipal solid waste with higher content of organic matter. In: 2nd International Conference on Information Science and Engineering (ICISE): IEEE, pp. 4078–81 (2010)

    Google Scholar 

  49. Chen, Y., Ke, H., Fredlund, D.G., Zhan, L., Xie, Y.: Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 136, 706–717 (2010)

    CAS  CrossRef  Google Scholar 

  50. Gourc, J.-P., Staub, M., Conte, M.: Decoupling MSW settlement into mechanical and biochemical processes–modelling and validation on large-scale setups. Waste Manage. 30, 1556–1568 (2010)

    CAS  CrossRef  Google Scholar 

  51. Bareither, C.A., Benson, C.H., Edil, T.B.: Recent findings on compressibility of municipal solid waste. GeoCongress State Art Pract. Geotech. Eng. 2012, 4212–4221 (2012)

    Google Scholar 

  52. Hossain, M.S., Gabr, M., Asce, F.: The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste. Waste Manage. 29, 2417–2424 (2009)

    CAS  CrossRef  Google Scholar 

  53. ASTM: Standard test method for permeability of granular soils (Constant Head). American Society for Testing and Materials, United States, D2434-68 (2006)

    Google Scholar 

  54. Taufiq, T.: Characteristics of fresh municipal solid waste: The University of Texas at Arlington (2010)

    Google Scholar 

  55. Chen, T.-H., Chynoweth, D.P.: Hydraulic conductivity of compacted municipal solid waste. Bioresour. Technol. 51, 205–212 (1995)

    CAS  CrossRef  Google Scholar 

  56. Hossain, M.S., Penmethsa, K.K., Hoyos, L.: Permeability of municipal solid waste (MSW) in bioreactor landfill with degradation. GeoCongress 2008: Geotechnics of Waste Management and Remediation. pp. 120–7 (2008)

    Google Scholar 

  57. Dixon, N., Jones, D.R.V.: Engineering properties of municipal solid waste. Geotext. Geomembr. 23, 205–233 (2005)

    CrossRef  Google Scholar 

  58. Ivanov, K.; Zaprjanova, P.; Angelova, V.; Bekjarov, G.; Dospatliev, L.; Gilkes, R. J.; Prakongkep, N.: ICP determination of phosphorous in soils and plants. In: Proceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1–6 August 2010. Working Group 1.5 Soil sense: rapid soil measurements (2010)

    Google Scholar 

  59. Yang, N.: Environmental analysis of municipal solid waste landfilling in China based on life cycle perspective. Ph.D. Thesis, Shanghai: Tongji university (2014)

    Google Scholar 

  60. Kim, M.H., Kim, J.W.: Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 408(19), 3998–4006 (2010)

    CAS  CrossRef  Google Scholar 

  61. Faaij, A., van Ree, R., Waldheim, L., Olsson, E., Oudhuis, A., van Wijk, A., DaeyOuwens, C., Turkenburg, W.: Gasification of biomass wastes and residues for electricity production. Biomass Bioenerg. 12(6), 387–407 (1997)

    CrossRef  Google Scholar 

  62. Zhang, Y., Banks, C.J., Heaven, S.: Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manage. 104, 166–174 (2012)

    CAS  CrossRef  Google Scholar 

  63. Yang, N., Damgaard, A., Scheutz, C., Shao, L.M., He, P.J.: A comparison of chemical MSW compositional data between China and Denmark. J. Environ. Sci. 74, 1–10 (2018)

    CrossRef  Google Scholar 

  64. Soest, P.J.V.: Development of a comprehensive system of feed analyzes and its application to forages. J. Anim. 26(1), 119–128 (1967)

    CrossRef  Google Scholar 

  65. Van Soest, P.J.: Use of detergents in the analyzis of fibrous feeds. 2. A rap-id method for the determination of fiber and lignin. J. Assoc. Off. Anal. Chem. 49, 546–551 (1963)

    Google Scholar 

  66. Provenzano, M.R., Malerba, A.D., Pezzolla, D., Gigliotti, G.: Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Manage. 34(3), 653–660 (2014)

    CAS  CrossRef  Google Scholar 

  67. Machado, S.L., Carvalho, M.F., Gourc, J.P., Vilar, O.M., Nascimento, J.C.F.D.: Methane generation in tropical landfills: simplified methods and field results. Waste Manage. 29(1), 153–161 (2009)

    CAS  CrossRef  Google Scholar 

  68. Huang, Q., Wang, Q., Dong, L., Xi, B., Zhou, B.: The current situation of solid waste management in China. J. Mater. Cycles Waste Manage. 8(1), 63–69 (2006)

    CrossRef  Google Scholar 

  69. M, B.: Regional study on policies and institutional assessment of solid waste management in Egypt, France: Blue Plan Regional Activity Centre (2000)

    Google Scholar 

  70. Unnikrishnan, S., Singh, A.: Energy recovery in solid waste management through CDM in India and other countries. Resour. Conserv. Recycl. 54(10), 630–640 (2010)

    CrossRef  Google Scholar 

  71. EPA: Municipal solid waste in The United States: 2011 facts and figures. Environmental Protection Agency, U.S.A. (2013)

    Google Scholar 

  72. ABS: Australia’s environment: issues and trends. Australian Bureau of Statistic, Australia (2003)

    Google Scholar 

  73. OECD: OECD environmental data compendium. Environment Directorate, France, 2006/2007

    Google Scholar 

  74. DEFRA: Municipal waste composition: review of municipal waste component analyzes—final report, London: Department for Environment Food and Rural Affairs (2008)

    Google Scholar 

  75. Mühle, S., Balsam, I., Cheeseman, C.R.: Comparison of carbon emissions associated with municipal solid waste management in Germany and the UK. Resour. Conserv. Recycl. 54(11), 793–801 (2010)

    CrossRef  Google Scholar 

  76. Eleazer, W.E., Odle, W.S., Wang, Y.S., Barlaz, M.A.: Biodegradability of municipal solid waste components in laborato-ry-scale landfills. Environ. Sci. Technol. 31(3), 911–917 (1997)

    CAS  CrossRef  Google Scholar 

  77. Chan, C., Jia, C.Q., Graydon, J.W., Kirk, D.W.: The behaviour of selected heavy metals in MSW incineration electrostatic precipitator ash during roasting with chlorination agents. J. Hazard. Mater. 50(1), 1–13 (1996)

    CAS  CrossRef  Google Scholar 

  78. Krogmann, U.: Composting–basics of collection and treatment of biogenic wastes of different compositions. Economica-Verlag, Germany (1994)

    Google Scholar 

  79. Badami, M., Mittica, A., Poggio, A.: MSW incineration capacity evaluations for the province of Turin (Northen Italy). Ann. N. Y. Acad. Sci. 456(12), 436–437 (2008)

    Google Scholar 

  80. Zheng, W., Phoungthong, K., Lü, F., Shao, L.M., He, P.J.: Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manage. 33(12), 2632–2640 (2013)

    CAS  CrossRef  Google Scholar 

  81. Saikia, N., Cornelis, G., Mertens, G., Elsen, J., Van Balen, K., Van Gerven, T., Vandecasteele, C.: Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar. J. Hazard. Mater. 154(1–3), 766–777 (2008)

    CAS  CrossRef  Google Scholar 

  82. Qiang, L.S., Zhao, J.P., Yang, Y.L.: Preparation and characterization of novel functional materials. Harbin Institute of Technology Press, Harbin (2017)

    Google Scholar 

  83. Qiu, P.S., Wang, G.F., Guo, L.W.: Material modern analysis test method experiment guide. Harbin Institute of Technology Press, Harbin (2001)

    Google Scholar 

  84. Ji, T.D., Lin, Z.R., Guo, L.W.: Secondary Ion Mass Spectrometry and Ion Probes. Science Press, Beijing (1989)

    Google Scholar 

  85. Mangialardi, T., Paolini, A.E., Polettini, A., Sirini, P.: Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. J. Hazard. Mater. 70(1–2), 53–70 (1999)

    CAS  CrossRef  Google Scholar 

  86. Rémond, S., Pimienta, P., Bentz, D.P.: Effects of the incorporation of municipal solid waste incineration fly ash in cement pastes and mortars: I. Exp. Study. Cem. Concr. Res. 32(2), 303–311 (2002)

    CrossRef  Google Scholar 

  87. Müller, U., Rübner, K.: The microstructure of concrete made with municipal waste incinerator bottom ash as an aggregate component. Cem. Concr. Res. 36(8), 1434–1443 (2006)

    CrossRef  CAS  Google Scholar 

  88. Bethanis, S., Cheeseman, C.R., Sollars, C.J.: Properties and micro-structure of sintered incinerator bottom ash. Ceram. Int. 28(8), 881–886 (2002)

    CAS  CrossRef  Google Scholar 

  89. Hass, A., Fine, P.: Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials-a Critical Review. Crit.Al Rev. Environ. Sci. Technol. 40(5), 365–399 (2010)

    CAS  CrossRef  Google Scholar 

  90. Tessier, A., Campbell, P.G.C., Bisson, M.: Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51(7), 844–851 (1979)

    CAS  CrossRef  Google Scholar 

  91. Ure, A.M., Quevauviler, P.H., Muntau, H., Griepink, B.: Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 51, 135–151 (1994)

    CrossRef  Google Scholar 

  92. Kersten, M., Schulz, B.: Speciation of Cr in leachates of a MSWI bottom ash landfill. Environ. Sci. Technol. 32, 1398–1403 (1998)

    CAS  CrossRef  Google Scholar 

  93. Krishnamurti, G.S., Naidu, R.: Solid-solution speciation and phytoavailability of copper and zinc in soils. Environ. Sci. Technol. 36(12), 2645–2651 (2002)

    CAS  CrossRef  Google Scholar 

  94. Pan, Y., Wu, Z., Zhou, J., Zhao, J., Ruan, X., Liu, J., Qian, G.: Chemical characteristics and risk assessment of typical municipal solid waste incineration (MSWI) fly ash in China. J. Hazard. Mater. 261, 269–276 (2013)

    CAS  CrossRef  Google Scholar 

  95. Luan, J., Chai, M., Liu, Y., Ke, X.: Heavy-metal speciation redistribution in solid phase and potential environmental risk assessment during the conversion of MSW incineration fly ash into molten slag. Environ. Sci. Pollut. Res. 25(4), 3793–3801 (2018)

    CAS  CrossRef  Google Scholar 

  96. Yu, J., Sun, L., Xiang, J., Jin, L., Hu, S., Su, S., Qiu, J.: Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Manage. Res. 31(7), 663–673 (2013)

    CAS  CrossRef  Google Scholar 

  97. Jiao, F., Zhang, L., Dong, Z., Namioka, T., Yamada, N., Ninomiya, Y.: Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior. Fuel Process. Technol. 152, 108–115 (2016)

    CAS  CrossRef  Google Scholar 

  98. Saqib, N., Bäckström, M.: Chemical association and mobility of trace elements in 13 different fuel incineration fly ashes. Fuel 165, 193–204 (2016)

    CAS  CrossRef  Google Scholar 

  99. Yao, J., Li, W.B., Kong, Q.N., Wu, Y.Y., He, R., Shen, D.S.: Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel 89(3), 616–622 (2010)

    CAS  CrossRef  Google Scholar 

  100. Soil, sludge and treated biowaste—Determination of pH. https://horizontal.ecn.nl

  101. Sun, C.Y., Wen, C.X., Liu, X.L., Liu, B.: Effects of initial pH on anaerobic digestion of biogas from domestic refuse and sludge mixtures. Chin. J. Agric. Technol. 9, 194–196 (2012)

    Google Scholar 

  102. Liu, Q., Sun, Y.H., Kou, W., Cao, Y.X.: Compositions analyzis and an-aerobic digestion characteristics on seasonal municipal solid waste. Chin. J. Environ. Eng. 11, 4507–4512 (2013)

    Google Scholar 

  103. Yue, B., Zhang, Z.B., Huang, Q.F., Li, H.: Study on the physico-chemical properties of living solid waste in several typical villages and towns in China. Environ. Eng. 7, 105–110 (2014)

    Google Scholar 

  104. Medina-Salasa, L.D., Castillo-Gonzáleza, E., Romero-Lópezb, R.: Physical and chemical characteristics of municipal solid waste in a rural locality-study case: cosautlán de carvajal, Veracruz, Mexico. Int. J. Bus. Hum. Ities Technol. 31(8), 117–122 (2013)

    Google Scholar 

  105. Zhang, A.P., Li, M., Chen, Y.M., Hu, L.Z.: Study on characteristics, peasants’ awareness and disposal mode of rural household solid waste around Chengdu. Environ. Pollut. Control. 3, 307–313 (2017)

    Google Scholar 

  106. Chen, S.H., Zhang, S.M.: Municipal Waste Compost Management and Technology. Fudan University Press, Shanghai (1990)

    Google Scholar 

  107. Wei, Z.M., Wang, S.P., Xi, B.D., Zhao, Y.: Changes of humic substances and organic nitrogen forms during municipal solid waste composting. Acta Sci. Circum. 2, 235–240 (2007)

    Google Scholar 

  108. Lv, B., Pu, G.B.: Study on transformation behavior of nitrogen in an-aerobic digestion of municipal solid waste. Chem. Biol. Eng. 9, 77–81 (2010)

    Google Scholar 

  109. EPA: Liquid-solid partitioning as a function of liquid-solid ratio for constituents in solid materials using an up-flow percolation column procedure. Environmental Protection Agency, U.S.A. (2009)

    Google Scholar 

  110. EPA: Mass transfer rates of constituents in monolithic or compacted granular materials using a semi-dynamic tank leaching procedure. U.S.A.: Environmental Protection Agency (2017)

    Google Scholar 

  111. EPA: Liquid-solid partitioning as a function of liquid-to-solid ratio in solid materials using a parallel batch procedure. U.S.A.: Environmental Protection Agency (2012)

    Google Scholar 

  112. Gawlik, B., van der Sloot, H., Ulberth, F., Nortcliff, S., Simonart, T., Cooper, B., Leschber, R., Andersen, K., Wichman, K.: On the development of horizontal CEN standards supporting the implementation of EU directives on sludge, soil and biowaste—project horizontal. TracTrends Anal. Chem. 23(10–11), 686–703 (2004)

    CAS  CrossRef  Google Scholar 

  113. Chinese Standard: Solid waste-extraction procedure for leaching toxicity-sulphuric acid and nitric acid method HJT299–2007 (2007)

    Google Scholar 

  114. Chinese Standard: Solid waste-extraction procedure for leaching toxicity-acetic acid buffer solution method HJ/T300-2007 (2007)

    Google Scholar 

  115. Chinese Standard: Solid waste-Extraction procedure for leaching toxicity-Horizontal vibration method HJ 557-2010 (2010)

    Google Scholar 

  116. Liu, H.H., Sang, S.X., Zhou, X.Z., Lian, C.X.: Leaching characteristics of heavy metals in municipal solid waste under simulated rain. Geochimica 6, 587–594 (2008)

    Google Scholar 

  117. He, P.J., H., Zhang, H., Wang, Z.D., Zhang, C.G.: Pollution characteristics of air pollution control residues from municipal solid waste incineration plant. J. Tongji Univ. (Nat. Sci.) 31(8), 972–976 (2003)

    Google Scholar 

  118. Shen, D.S., Zhen, Y.G., Yao, J., Wang, M.Z., Zhang, Y.: Analysis of pollution characteristics of solid waste incinerator fly ash in Zhejiang province. Chin. J. Environ. Sci. 9, 2610–2616 (2011)

    Google Scholar 

  119. Zhang, H., Yu, S.Y., Shao, L.M., He, P.J.: Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators. Chin. J. Environ. Sci. 1, 467–476 (2018)

    Google Scholar 

  120. Yu, L., Xie, Y.D., Ji, H.B., Pang, X.L., Liu, J.S.: Leaching tests of domestic garbage slag heavy metals under different pH. Environ. Sci. Manag. 1, 111–114 (2016)

    Google Scholar 

  121. ASTM: Standard Test Method for Moisture in the Analysis Sample of Coal and Coke. ASTM D3173/D3173M-17a (2011)

    Google Scholar 

  122. ISO: Solid mineral fuels—Hard coal—Determination of moisture in the general analysis test sample by drying in nitrogen. ISO 11722:2013 (2013)

    Google Scholar 

  123. AS: Coal and coke—Analysis and testing Proximate analysis of higher rank coal. AS 1038.3 (2000)

    Google Scholar 

  124. ASTM: Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM D4239-14 (2014)

    Google Scholar 

  125. ISO: Solid mineral fuels—Determination of total sulfur—High temperature combustion method. ISO 351:1996 (1996)

    Google Scholar 

  126. AS: Coal and coke—Analysis and testing Higher rank coal and coke—Ultimate analysis—Total sulfur—High-temperature combustion method. AS 1038.6.3.2-2003 (R2013)

    Google Scholar 

  127. ASTM: Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM D3175-18 (2018)

    Google Scholar 

  128. ISO: Hard coal and coke—Determination of volatile matter. ISO 562:2010 (2010)

    Google Scholar 

  129. ASTM: Standard Test Methods for Proximate Analysis of the Analysis Sample of Coal and Coke by Instrumental Procedures. ASTM D5142-09 (2009)

    Google Scholar 

  130. ISO: Coal—Proximate analysis. ISO 17246:2010 (2010)

    Google Scholar 

  131. AS: Coal and coke—Analysis and testing Proximate analysis of higher rank coal. AS 1038.3-2000 (2000)

    Google Scholar 

  132. ASTM: Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal. ASTM D5373-08 (2008)

    Google Scholar 

  133. ASTM: Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM D3174-12(2018)

    Google Scholar 

  134. ASTM: Standard Test Method for Gross Calorific Value of Coal and Coke. D5865-13 (2013)

    Google Scholar 

  135. ISO: Solid mineral fuels—determination of gross calorific value by the bomb calorimetric method and calculation of net calorific value. ISO 1928 (2009)

    Google Scholar 

  136. AS: Coal and coke-Analysis and testing Gross calorific value. AS1038.5 (1998)

    Google Scholar 

  137. Kathiravale, S., Yunus, M.N.M., Sopian, K., Samsuddin, A.H., Rah-man, R.A.: Modeling the heating value of municipal solid waste. Fuel 82(9), 1119–1125 (2003)

    CAS  CrossRef  Google Scholar 

  138. Dean, W.: Determination of carbonate and organic matter in calcareous, sediments and sedimentary rock by loss on ignition: comparison with other methods. J. Sediment. Petrol. 44, 242–248 (1974)

    CAS  Google Scholar 

  139. Eli, SF., Benjamin, C.: The application of thermoanalytical techniques to reaction kinetics: the thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem. 62, 394–397 (1958)

    CAS  CrossRef  Google Scholar 

  140. Stanier, D.: An introduction to differential scanning calorimetry (2013)

    Google Scholar 

  141. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N.: ICTAC kinetics committee recommendations for performing kinetic computations on thermal analyzis data. Thermochim. Acta 520(1–2), 1–19 (2011)

    CAS  CrossRef  Google Scholar 

  142. Anderson, M.B.: Composition of municipal solid waste in the united states and implications for carbon sequestration and methane yield. J. Environ. Eng. 135(10), 901–909 (2009)

    CrossRef  CAS  Google Scholar 

  143. Painter, R., Watson, W.: Tennessee waste characterization study, pp. 16–20. Tennessee State University Department of Civil and Environmental Engineering, Tennessee (2008)

    Google Scholar 

  144. Yamada, T., Asari, M., Miura, T.: Municipal solid waste composition and food loss reduction in Kyoto City. J. Mater. Cycles Waste Manage. 3, 1–10 (2017)

    Google Scholar 

  145. Zhang, D., Keat, T.S., Gersberg, R.M.: A comparison of municipal solid waste management in Berlin and Singapore. Waste Manage. 30(5), 921 (2010)

    CrossRef  Google Scholar 

  146. Alwaeli, M.: An overview of municipal solid waste management in Poland. The current situation, problems and challenges. Environ. Prot. Eng. 4, 181–193 (2015)

    Google Scholar 

  147. Sharholy, M., Ahmad, K., Vaishya, R.C.: Municipal solid waste characteristics and management in Allahabad. India. Waste Manage. 27(4), 490 (2007)

    CrossRef  Google Scholar 

  148. Tan, S.T., Lee, C.T., Hashim, H.: Optimal process network for municipal solid waste management in Iskandar Malaysia. J. Clean. Prod. 71(4), 48–58 (2014)

    CrossRef  Google Scholar 

  149. Hussain, M., Haider, S., Abbas, Y.: A study of source specific quantification, composition and disposal methods of municipal solid waste at Konodas Gilgit City, Pakistan. J. Biodivers. Environ. Sci. 8(5), 20162222–20166663 (2016)

    Google Scholar 

  150. Inglezakis, V., Dvorsak, S., Varga, J.: Municipal solid waste experimental studies in Romania and Bulgaria. Cogenttech 3(3), 64–73 (2012)

    Google Scholar 

  151. Montejo, C., Costa, C., Ramos, P.: Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants. Appl. Therm. Eng. 31(13), 2135–2140 (2011)

    CAS  CrossRef  Google Scholar 

  152. Ersoy, H., Bulut, F., Ersoy, A.F.: Municipal solid waste management and practices in coastal cities of the Eastern Black Sea: a case study of Trabzon City, NE Turkey. Bull. Eng. Geol. Env. 67(3), 321–333 (2008)

    CrossRef  Google Scholar 

  153. Burnley, S.J., Ellis, J.C., Flowerdew, R.: Assessing the composition of municipal solid waste in Wales. Resour. Conserv. Recycl. 49(3), 264–283 (2007)

    CrossRef  Google Scholar 

  154. Abdalqader, A., Hamad, J.: Municipal solid waste composition determination supporting the integrated solid waste management in Gaza strip. Int. J. Environ. Sci. Dev. 3(2), 172–176 (2012)

    CrossRef  Google Scholar 

  155. Peng, Z., Peng, L., Zhang, X.: Study on the composition and physical characteristics of municipal solid waste in Chongqing. Environ. Sci. Manag. 39(2), 14–17 (2014). (in Chinese)

    Google Scholar 

  156. Wang, Y., Dong, X., Zhang, Y.: Analyzis on the characteristics of municipal solid waste in tangshan. J. Tangshan Coll.E 20(6), 62–63 (in Chinese) (2007)

    Google Scholar 

  157. Dan, Z., Han, Z.: Study on the characteristics of municipal solid waste in tibetan plateau area at the dry season. China Biogas 30(6), 33–36 (2012). (in Chinese)

    Google Scholar 

  158. Tao, X., Huang, T., Yang, H.: Investigation and analysis of municipal solid waste in downtown area of Chengdu. Guangdong Agric. Sci. (1), 94–96 (2009). (in Chinese)

    Google Scholar 

  159. Huang C.: Statistical study on physical and chemical components of municipal solid waste in Shenzhen. Huazhong University of Science and Technology (2012). (in Chinese)

    Google Scholar 

  160. Moradian, F., Pettersson, A., Richards, T.: A thermodynamic equilibrium model applied to predict the fouling tendency in a commercial fluidized-bed boiler, combusting solid waste. Energy Fuels 150422082504003 (2015)

    Google Scholar 

  161. Moradian, F., Pettersson, A., Richards, T.: Bed agglomeration characteristics during cocombustion of animal waste with municipal solid waste in a bubbling fluidized-bed boiler-A thermodynamic modeling approach. Energy Fuels 28(3), 2236–2247 (2014)

    CAS  CrossRef  Google Scholar 

  162. Ma, W.: Thermal behavior of chlorine during municipal solid waste combustion. Tianjin University (2010). (in Chinese)

    Google Scholar 

  163. Tang, L.: Study on the properties of pyrolysis products and elements distribution during Municipal Solid Waste pyrolysis. Chongqing University (2015). (in Chinese)

    Google Scholar 

  164. Wang, X., Jiao, Y., Jin, B., Xu, B., Wu, J.: The effect of SiO2 addictive on melting characteristics of MSW incineration fly ash. Power Syst. Eng. 5, 17–20 (2007). (in Chinese)

    Google Scholar 

  165. Xu, M.: The experimental study on ash sintering characteristics of heated surface on MSW incineration. Zhejiang University (2007)

    Google Scholar 

  166. Chen, B.-Y., Lin, K.-L.: Biotoxicity assessment on reusability of municipal solid waste incinerator (MSWI) ash. J. Hazard. Mater. B136, 741–746 (2006)

    CrossRef  CAS  Google Scholar 

  167. Nielfa, A., Cano, R., Fdz-Polanco, M.: Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 5, 14–21 (2015)

    CAS  CrossRef  Google Scholar 

  168. Shi, H., Mahinpey, N., Aqsha, A.: Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Manag 48, 34–47 (2015)

    CrossRef  CAS  Google Scholar 

  169. Sørum, L., Grønli, M.G., Hustad, J.E.: Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 80(9), 1217–1227 (2000)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco J. Castaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Castaldi, M.J. et al. (2020). Municipal Solid Waste. In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_6

Download citation