Skip to main content

Solid Residues (Biochar, Bottom Ash, Fly Ash, …)

  • 865 Accesses

Abstract

Solid co-products from biochemical, chemical and thermochemical processes of biomass and biowaste have gained momentum in utilization as secondary raw materials. These solids are carbon-based or mineral-based materials, and for their suitable use in a number of fields, various properties should be determined. This chapter addresses advanced techniques used to determine physical and chemical properties of these solid residues. For each technique, the basics and protocols are described. Post-treatment procedures and interpretation of the results obtained are also provided for some residues.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-35020-8_15
  • Chapter length: 81 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-35020-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.00
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2

Adapted with permission from Elsevier [41]

Fig. 15.3

Reprinted with permission from Elsevier [45]

Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9
Fig. 15.10

Reprinted with permission from Elsevier [73]

Fig. 15.11
Fig. 15.12
Fig. 15.13

Reprinted with permission from Elsevier [80]

Fig. 15.14
Fig. 15.15
Fig. 15.16
Fig. 15.17
Fig. 15.18

Reprinted with permission from Elsevier [94, 95]

Fig. 15.19

Adapted with permission from Elsevier [99]

Fig. 15.20
Fig. 15.21

Reprinted with permission from Elsevier [36] & Ducousso Ph.D. thesis [98]

Fig. 15.22

Reproduced with permission from Elsevier [36]

Fig. 15.23

Republished with permission of RSC Pub from Carbon-atom wires: 1-D systems with tunable properties, Casari et al., Nanoscale 8, 2016 [107]; permission conveyed through Copyright Clearance Center, Inc.

Fig. 15.24
Fig. 15.25

Reprinted with permission from Springer [113]

Fig. 15.26

Reprinted with permission from Springer [114]

Fig. 15.27

Reprinted with permission from Springer [113]

Fig. 15.28

Reprinted with permission from American Chemical Society [116]

Fig. 15.29
Fig. 15.30
Fig. 15.31
Fig. 15.32
Fig. 15.33
Fig. 15.34
Fig. 15.35
Fig. 15.36
Fig. 15.37
Fig. 15.38
Fig. 15.39
Fig. 15.40
Fig. 15.41
Fig. 15.42
Fig. 15.43
Fig. 15.44
Fig. 15.45
Fig. 15.46
Fig. 15.47

Reprinted with permission from American Chemical Society [127]

Fig. 15.48

Photo credit image a P. Benzo (CEMES-CNRS, Toulouse). Image b reprinted with permission from American Chemical Society [127]

Fig. 15.49
Fig. 15.50
Fig. 15.51
Fig. 15.52
Fig. 15.53
Fig. 15.54
Fig. 15.55
Fig. 15.56
Fig. 15.57
Fig. 15.58
Fig. 15.59

Reprinted with permission from Elsevier [111]

References

  1. ASTM D5759-12, Standard guide for characterization of coal fly ash and clean coal combustion fly ash for potential uses. ASTM International, West Conshohocken (2012). www.astm.org

  2. Antal Jr., M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)

    CAS  CrossRef  Google Scholar 

  3. Lehmann, J., Joseph, S.: Biochar for Environmental Management: Science, Technology and Implementation. Earthscan from Routledge, Taylor and Francis Group, London (2015)

    Google Scholar 

  4. Singh, B., Camps-Aberstain, M., Lehmann, J.: Biochar, a Guide to Analytical Methods. CRC Press, Taylor and Francis Group, Boca Raton (2017)

    Google Scholar 

  5. Koziński, J.A., Saade, R.: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study. Fuel 77, 225–237 (1998)

    CrossRef  Google Scholar 

  6. Watson, A.Y., Valberg, P.A.: Carbon black and soot: two different substances. Am. Ind. Hyg. Assoc. J. 62, 218–228 (2001)

    CAS  Google Scholar 

  7. Reza Kholghy, M., Veshkini, A., Thomson, M.J.: The core-shell internal nanostructure of soot—a criterion to model soot maturity. Carbon 100, 508–536 (2016)

    CrossRef  CAS  Google Scholar 

  8. Trubetskaya, A., Jensen, P.A., Jensen, A.D., Garcia Llamas, A.D., Umeki, K., Gardini, D., Kling, J., Bates, R.B., Glarborg, P.: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures. Appl. Energy 171, 468–482 (2016)

    CAS  CrossRef  Google Scholar 

  9. Corbin, J.C., Lohmann, U., Sierau, B., Keller, A., Burtscher, H., Mensah, A.A.: Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmos. Chem. Phys. 15, 11885–11907 (2015)

    CAS  CrossRef  Google Scholar 

  10. Andreae, M.O., Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148 (2006)

    CAS  CrossRef  Google Scholar 

  11. Long, C.M., Nascarella, M.A., Valberg, P.A.: Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)

    CAS  CrossRef  Google Scholar 

  12. Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E.C., Weiss-Hortala, E., Fiori, L.: Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manage. 47 Part A, 114–121 (2016)

    CAS  CrossRef  Google Scholar 

  13. Liu, W.-J., Zeng, F.-X., Jiang, H., Zhang, X.-S.: Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol. 102, 8247–8252 (2011)

    CAS  CrossRef  Google Scholar 

  14. Ahmad, M., Upamali Rajapaksha, A., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)

    CAS  CrossRef  Google Scholar 

  15. Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr., C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202 (2014)

    CAS  CrossRef  Google Scholar 

  16. Azargohar, R., Dalai, A.K.: Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 131, 762–773 (2006)

    CAS  CrossRef  Google Scholar 

  17. Rodríguez-Reinoso, F.: The role of carbon materials in heterogeneous catalysis. Carbon 36, 159–175 (1998)

    CrossRef  Google Scholar 

  18. Serp, P., Figueiredo, J.L.: Carbon Materials for Catalysis. Wiley, Hoboken (2009)

    Google Scholar 

  19. Hervy, M., Berhanu, S., Weiss-Hortala, E., Chesnaud, A., Gérente, C., Villot, A., Pham Minh, D., Thorel, A., Le Coq, L., Nzihou, A.: Multi-scale characterisation of chars mineral species for tar cracking. Fuel 189, 88–97 (2017)

    CAS  CrossRef  Google Scholar 

  20. Lee, J., Kim, K.-H., Kwon, E.E.: Biochar as a catalyst. Renew. Sust. Energ. Rev. 77, 70–79 (2017)

    CAS  CrossRef  Google Scholar 

  21. Liu, W.-J., Jiang, H., Yu, H.-Q.: Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015)

    CAS  CrossRef  Google Scholar 

  22. Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., Gómez-Serrano, V.: Preparation of activated carbon–metal oxide hybrid catalysts: textural characterization. Fuel Process. Technol. 126, 95–103 (2014)

    CAS  CrossRef  Google Scholar 

  23. Qian, K., Kumar, A., Zhang, H., Bellmer, D., Huhnke, R.: Recent advances in utilization of biochar. Renew. Sust. Energ. Rev. 42, 1055–1064 (2015)

    CAS  CrossRef  Google Scholar 

  24. Westra, L.: The Common Good and Environmental Governance for the Support of Life. Cambridge Scholars Publishing, Newcastle (2016)

    Google Scholar 

  25. World Energy Resources Report 2016. World Energy Council, London (2016)

    Google Scholar 

  26. Parent, P., Laffon, C., Marhaba, I., Ferry, D., Regier, T.Z., Ortega, I.K., Chazallon, B., Carpentier, Y., Focsa, C.: Nanoscale characterization of aircraft soot: a high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon 101, 86–100 (2016)

    CAS  CrossRef  Google Scholar 

  27. Trubetskaya, A., Brown, A., Tompsett, G.A., Timko, M.T., Kling, J., Broström, M., Larsen Andersen, M., Umeki, K.: Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Appl. Energy 212, 1489–1500 (2018)

    CAS  CrossRef  Google Scholar 

  28. Fals, A.E., Hadjiev, V.G., Robles Hernández, F.C.: Porous media reinforced with carbon soots. Mater. Chem. Phys. 140, 651–658 (2013)

    CAS  CrossRef  Google Scholar 

  29. Fidalgo, B., Menéndez, J.Á.: Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chin. J. Catal. 32, 207–216 (2011)

    CAS  CrossRef  Google Scholar 

  30. Serrano, D.P., Botas, J.A., Fierro, J.L.G., Guil-López, R., Pizzaro, P., Gómez, G.: Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials. Fuel 89, 1241–1248 (2010)

    CAS  CrossRef  Google Scholar 

  31. Liu, S., Wang, Y., Wu, R., Zeng, X., Gao, S., Xu, G.: Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal. Energy Fuels 28, 58–66 (2014)

    CAS  CrossRef  Google Scholar 

  32. Berhanu, S., Hervy, M., Weiss-Hortala, E., Proudhon, H., Berger, M.-H., Chesnaud, A., Faessel, M., King, A., Pham Minh, D., Villot, A., Gérente, C., Thorel, A., Le Coq, L., Nzihou, A.: Advanced characterization unravels the structure and reactivity of wood-based chars. J. Anal. Appl. Pyrol. 130, 79–89 (2018)

    CAS  CrossRef  Google Scholar 

  33. Muradov, N.: Catalysis of methane decomposition over elemental carbon. Catal. Commun. 2, 89–94 (2001)

    CAS  CrossRef  Google Scholar 

  34. Muradov, N., Smith, F., T-Raissi, A.: Catalytic activity of carbons for methane decomposition reaction. Catal. Today 102, 225–233 (2005)

    CAS  CrossRef  Google Scholar 

  35. Suelves, I., Pinilla, J.L., Lázaro, M.J., Moliner, R.: Carbonaceous materials as catalysts for decomposition of methane. Chem. Eng. J. 140, 432–438 (2008)

    CAS  CrossRef  Google Scholar 

  36. Ducousso, M., Weiss-Hortala, E., Nzihou, A., Castaldi, M.J.: Reactivity enhancement of gasification biochars for catalytic applications. Fuel 159, 491–499 (2015)

    CAS  CrossRef  Google Scholar 

  37. Nzihou, A., Stanmore, B., Sharrock, P.: A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58, 305–317 (2013)

    CAS  CrossRef  Google Scholar 

  38. Wang, F.-J., Zhang, S., Chen, Z.-D., Liu, C., Wang, Y.-G.: Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal. J. Anal. Appl. Pyrol. 105, 269–275 (2014)

    CAS  CrossRef  Google Scholar 

  39. Klinghoffer, N.B., Castaldi, M.J., Nzihou, A.: Influence of char composition and inorganics on catalytic activity of char from biomass gasification. Fuel 157, 37–47 (2015)

    CAS  CrossRef  Google Scholar 

  40. Hervy, M., Pham Minh, D., Gérente, C., Weiss-Hortala, E., Nzihou, A., Villot, A., Le Coq, L.: H2S removal from syngas using wastes pyrolysis chars. Chem. Eng. J. 334, 2179–2189 (2018)

    CAS  CrossRef  Google Scholar 

  41. Sizmur, T., Fresno, T., Akgül, G., Frost, H., Moreno-Jiménez, E.: Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017)

    CAS  CrossRef  Google Scholar 

  42. Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J.: All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013)

    CAS  CrossRef  Google Scholar 

  43. Lu, L., Sahajwalla, V., Kong, C., Harris, D.: Quantative X-ray diffraction analysis and its application to various coals. Carbon 39, 1821–1833 (2001)

    CAS  CrossRef  Google Scholar 

  44. Monthioux, M., Noé, L., Kobylko, M., Wang, Y., Cazares-Huerta, T.C., Pénicaud, A.: Determining the structure of graphene-based flakes from their morphotype. Carbon 115, 128–133 (2017)

    CAS  CrossRef  Google Scholar 

  45. Smith, M.A., Foley, H.C., Lobo, R.F.: A simple model describes the PDF of a non-graphitizing carbon. Carbon 42, 2041–2048 (2004)

    CAS  CrossRef  Google Scholar 

  46. Gracia-Espino, E., López-Urías, F., Kim, Y.A., Hayashi, T., Muramatsu, H., Endo, M., Terrones, H., Terrones, M., Dresselhaus, M.S.: Novel carbon-based nanomaterials: graphene and graphitic nanoribbons. In: Somiya, S., Kaneno, M. (eds.) Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, pp. 61–87. Elsevier, Waltham (2013)

    CrossRef  Google Scholar 

  47. Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H.: Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)

    CrossRef  CAS  Google Scholar 

  48. Araujo, P.T., Terrones, M., Dresselhaus, M.S.: Defects and impurities in graphene-like materials. Mater. Today 15, 98–109 (2012)

    CAS  CrossRef  Google Scholar 

  49. Pré, P., Huchet, G., Jeulin, D., Rouzaud, J.N., Sennour, M., Thorel, A.: A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images. Carbon 52, 239–258 (2013)

    CrossRef  CAS  Google Scholar 

  50. Anees, P., Valsakumar, M.C., Chandra, S., Panigrahi, B.K.: Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures. Model. Simul. Mater. Sci. (2014). https://doi.org/10.1088/0965-0393/22/3/035016

    CrossRef  Google Scholar 

  51. Youcai, Z.: Pollution Control and Resource Recovery: Municipal Solid Wastes Incineration Bottom Ash and Fly Ash. Butterworth-Heinemann (2017)

    Google Scholar 

  52. Liyanage, M., Jayaranjan, D., van Hullebusch, E.D., Annachhatre, A.P.: Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Biotechnol. 13, 467–486 (2014)

    CrossRef  CAS  Google Scholar 

  53. Maschio, S., Tonello, G., Piani, L., Furlani, E.: Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength. Chemosphere 85, 666–671 (2011)

    CAS  CrossRef  Google Scholar 

  54. Ulewicz, M., Jura, J.: Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar. In: E3S Web of Conferences, vol. 18 (2017). https://doi.org/10.1051/e3sconf/201712301029

    CrossRef  CAS  Google Scholar 

  55. Valentim, B., Białecka, B., Gonçalves, P.A., Guedes, A., Guimarães, R., Cruceru, M., Całus-Moszko, J., Popescu, L.G., Predeanu, G., Santos, A.C.: Undifferentiated inorganics in coal fly ash and bottom ash: calcispheres, magnesiacalcispheres, and magnesiaspheres. Minerals (2018). https://doi.org/10.3390/min8040140

    CrossRef  Google Scholar 

  56. Chen, J., Fang, D., Duan, F.: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor. Appl. Energy 218, 54–65 (2018)

    CrossRef  Google Scholar 

  57. Thielmann, F., Burnett, D.: Isotherm types and adsorption mechanisms of solvents on pharmaceutical excipients. Application Note 26, Surface Measurement Systems Ltd.

    Google Scholar 

  58. Sullivan, P.D., Stone, B.R., Hashisho, Z., Rood, M.J.: Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13, 173–189 (2007)

    CAS  CrossRef  Google Scholar 

  59. García-Pérez, J.V., Cárcel, J.A., Clemente, G., Mulet, A.: Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT Food Sci. Technol. 41, 18–25 (2008)

    CrossRef  CAS  Google Scholar 

  60. Furmaniak, S., Gauden, P.A., Terzyk, A.P., Rychlicki, G.: Water adsorption on carbons—critical review of the most popular analytical approaches. Adv. Colloid Interface Sci. 137, 82–143 (2008)

    CAS  CrossRef  Google Scholar 

  61. Hill, C.A.S., Norton, A.J., Newman, G.: The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44, 497–514 (2010)

    CAS  CrossRef  Google Scholar 

  62. Nguyen, C., Do, D.D.: The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 39, 1327–1336 (2001)

    CAS  CrossRef  Google Scholar 

  63. Kapoor, A., Ritter, J.A., Yang, R.T.: On the Dubinin-Radushkevich equation for adsorption in microporous solids in the Henry’s law region. Langmuir 5, 1118–1121 (1989)

    CAS  CrossRef  Google Scholar 

  64. Stoeckli, F.: Dubinin’s theory and its contribution to adsorption science. Russ. Chem. Bull. 50, 2265–2272 (2001)

    CAS  CrossRef  Google Scholar 

  65. Gauden, P.A.: Does the Dubinin-Serpinsky theory adequately describe water adsorption on adsorbents with high-energy centers? J. Colloid Interface Sci. 282, 249–260 (2005)

    CAS  CrossRef  Google Scholar 

  66. Williams, D. R., Levoguer, C.L.: Measuring BET surface areas using organic probe molecules. Application Note 18, Surface Measurement Systems

    Google Scholar 

  67. Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767–773 (2000)

    CAS  CrossRef  Google Scholar 

  68. Rutherford, S.W.: Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves. Langmuir 22, 702–708 (2006)

    CAS  CrossRef  Google Scholar 

  69. Charrière, D., Behra, P.: Water sorption on coals. J. Colloid Interface Sci. 344, 460–467 (2010)

    CrossRef  CAS  Google Scholar 

  70. Zou, L., Gong, L., Xu, P., Feng, G., Liu, H.: Modified GAB model for correlating multilayer adsorption equilibrium data. Sep. Purif. Technol. 161, 38–43 (2016)

    CAS  CrossRef  Google Scholar 

  71. Bravo-Osuna, I., Ferrero, C., Jiménez-Castellanos, M.R.: Water sorption–desorption behaviour of methyl methacrylate–starch copolymers: effect of hydrophobic graft and drying method. Eur. J. Pharm. Biopharm. 59, 537–548 (2005)

    CAS  CrossRef  Google Scholar 

  72. Timmermann, E.O.: Multilayer sorption parameters: BET or GAB values? Colloids Surf. A 220, 235–260 (2003)

    CAS  CrossRef  Google Scholar 

  73. Kachrimanis, K., Noisternig, M.F., Griesser, U.J., Malamataris, S.: Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Eur. J. Pharm. Biopharm. 64, 307–315 (2006)

    CAS  CrossRef  Google Scholar 

  74. Loughlin, K.F., Hassan, M.M., Fatehi, A.I., Zahur, M.: Rate and equilibrium sorption parameters for nitrogen and methane on carbon molecular sieve. Gas Sep. Purif. 7, 264–273 (1993)

    CAS  CrossRef  Google Scholar 

  75. Xie, Y., Hill, C.A.S., Jalaludin, Z., Curling, S.F., Anandjiwala, R.D., Norton, A.J., Newman, G.: The dynamic water vapour sorption behavior of natural fibres and kinetic analysis using the parallel exponential kinetics model. J. Mater. Sci. 46, 479–489 (2011)

    CAS  CrossRef  Google Scholar 

  76. Popescu, C.-M., Hill, C.A.S., Anthony, R., Ormondroyd, G., Curling, S.: Equilibrium and dynamic vapour water sorption properties of biochar derived from apple wood. Polym. Degrad. Stab. 111, 263–268 (2015)

    CAS  CrossRef  Google Scholar 

  77. Fletcher, A.J., Uygur, Y., Mark Thomas, K.: Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 111, 8349–8359 (2007)

    CAS  CrossRef  Google Scholar 

  78. Foley, N.J., Thomas, K.M., Forshaw, P.L., Stanton, D., Norman, P.R.: Kinetics of water vapor adsorption on activated carbon. Langmuir 13, 2083–2089 (1997)

    CAS  CrossRef  Google Scholar 

  79. Harding, A.W., Foley, N.J., Norman, P.R., Francis, D.C., Thomas, K.M.: Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons. Langmuir 14, 3858–3864 (1998)

    CAS  CrossRef  Google Scholar 

  80. Cossarutto, L., Zimny, T., Kaczmarczyk, J., Siemieniewska, T., Bimer, J., Webera, J.V.: Transport and sorption of water vapour in activated carbons. Carbon 39, 2339–2346 (2001)

    CAS  CrossRef  Google Scholar 

  81. Fletcher, A.J., Benham, M.J., Thomas, K.M.: Multicomponent vapor sorption on active carbon by combined microgravimetry and dynamic sampling mass spectrometry. J. Phys. Chem. B 106, 7474–7482 (2002)

    CAS  CrossRef  Google Scholar 

  82. Fletcher, A.J., Yüzak, Y., Thomas, K.M.: Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004 (2006)

    CAS  CrossRef  Google Scholar 

  83. Laine, N.R., Vastola, F.J., Walker Jr., P.N.: The importance of active surface area in the carbon-oxygen reaction. J. Phys. Chem. 67, 2030–2034 (1963)

    CAS  CrossRef  Google Scholar 

  84. Ehrburger, P., Louys, F., Lahaye, J.: The concept of active sites applied to the study of carbon reactivity. Carbon 27, 389–393 (1989)

    CAS  CrossRef  Google Scholar 

  85. Burg, P., Abraham, M.H., Cagniant, D.: Methods of determining polar and non-polar sites on carbonaceous adsorbents. The contribution of the linear solvation energy relationship approach. Carbon 41, 867–879 (2003)

    CAS  CrossRef  Google Scholar 

  86. Groszek, A.J.: Graphitic and polar surface sites in carbonaceous solids. Carbon 25, 717–722 (1987)

    CAS  CrossRef  Google Scholar 

  87. López-Garzón, F.J., Pydan, M., Domingo-Garcia, M.: Studies of the surface properties of active carbons by inverse gas chromatography at infinite dilution. Langmuir 9, 531–536 (1993)

    CrossRef  Google Scholar 

  88. Tisserand, C., Calvet, R., Patry, S., Galet, L., Doods, J.A.: Comparison of two techniques for the surface analysis of alumina (Al2O3): inverse gas chromatography at finite concentration (IGC-FC) and dynamic vapor sorption (DVS). Powder Technol. 190, 53–58 (2009)

    CAS  CrossRef  Google Scholar 

  89. Nowak, E., Combes, G., Stitt, E.H., Pacek, A.W.: A comparison of contact angle measurement techniques applied to highly porous catalyst supports. Powder Technol. 233, 52–64 (2013)

    CAS  CrossRef  Google Scholar 

  90. Burnett, D., Thielmann, F.: Organic solvent sorption using a dynamic vapour sorption instrument-an overview. Application Note 103, Surface Measurement Systems Ltd., (last update 24/11/06)

    Google Scholar 

  91. Levoguer, C.L., Williams, D.R.: Measurement of the surface energies of pharmaceutical powders using a novel vapour adsorption method. Application Note 17, Surface Measurement Systems Ltd.

    Google Scholar 

  92. Burnett, D., Thielmann, F., Booth, J.: Determining the heat of sorption on organic and inorganic powders using DVS. Application Note 19, Surface Measurement Systems Ltd.

    Google Scholar 

  93. Klomkliang, N., Kaewmanee, R., Saimoey, S., Intarayothy, S., Do, D.D.: Adsorption of water and methanol on highly graphitized thermal carbon black: the effects of functional group and temperature on the isosteric heat at low loadings. Carbon 99, 361–369 (2016)

    CAS  CrossRef  Google Scholar 

  94. Argyropoulos, D., Alex, R., Kohler, R., Müller, J.: Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci. Technol. 47, 324–331 (2012)

    CAS  CrossRef  Google Scholar 

  95. Choudhury, D., Sahu, J.K., Sharma, G.D.: Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots. Ind. Crops Prod. 33, 211–216 (2011)

    CrossRef  Google Scholar 

  96. Quirijns, E.J., van Boxtel, A.J.B., Loon, W.K.P., van Straten, G.: Sorption isotherms, GAB parameters and isosteric heat of sorption. J. Sci. Food Agric. 85, 1805–1814 (2005)

    CAS  CrossRef  Google Scholar 

  97. Sarkisov, L., Centineo, A., Brandani, S.: Molecular simulation and experiments of water adsorption in a high surface area activated carbon: hysteresis, scanning curves and spatial organization of water clusters. Carbon 118, 127–138 (2017)

    CAS  CrossRef  Google Scholar 

  98. Ducousso, M.: Gasification biochar reactivity toward methane cracking. Ph.D. thesis, Université de Toulouse (2015). https://tel.archives-ouvertes.fr/tel-01411838

  99. Figueiredo, J., Pereira, M.F., Freitas, M.M., Órfão, J.J.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999)

    CAS  CrossRef  Google Scholar 

  100. Zhou, J.H., Sui, Z.J., Zhu, J., Li, P., Chen, D., Dai, Y.C., Yuan, W.-K.: Characterization of surface oxygen complexes on carbon nanofibers by TPD. XPS FT-IR. Carbon 45, 785–796 (2007)

    CAS  CrossRef  Google Scholar 

  101. Szymański, G.S., Karpiński, Z., Biniak, S., Świa̧tkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639 (2002)

    CrossRef  Google Scholar 

  102. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    CAS  CrossRef  Google Scholar 

  103. Asadullah, M., Zhang, S., Min, Z., Yimsiri, P., Li, C.Z.: Effects of biomass char structure on its gasification reactivity. Bioresour. Technol. 101, 7935–7943 (2010)

    CAS  CrossRef  Google Scholar 

  104. Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 368, 5355–5377 (2010)

    CAS  CrossRef  Google Scholar 

  105. McDonald-Wharry, J., Manley-Harris, M., Pickering, K.: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon 59, 383–405 (2013)

    CAS  CrossRef  Google Scholar 

  106. Vautard, F., Dentzer, J., Nardin, M., Schultz, J., Defoort, B.: Influence of surface defects on the tensile strength of carbon fibers. Appl. Surf. Sci. 322, 185–193 (2014)

    CAS  CrossRef  Google Scholar 

  107. Casari, C.S., Tommasini, M., Tykwinski, R.R., Milani, A.: Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)

    CAS  CrossRef  Google Scholar 

  108. Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005)

    CAS  CrossRef  Google Scholar 

  109. Li, X., Hayashi, J., Li, C.Z.: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85, 1700–1707 (2006)

    CAS  CrossRef  Google Scholar 

  110. Li, X., Hayashi, J., Li, C.Z.: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 85, 1509–1517 (2006)

    CAS  CrossRef  Google Scholar 

  111. Zickler, G.A., Smarsly, B., Gierlinger, N., Peterlik, H., Paris, O.: A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44, 3239–3246 (2006)

    CAS  CrossRef  Google Scholar 

  112. Keown, D.M., Li, X., Hayashi, J.I., Li, C.Z.: Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Process. Technol. 89, 1429–1435 (2008)

    CAS  CrossRef  Google Scholar 

  113. Mallet-Ladeira, P., Puech, P., Weisbecker, P., Vignoles, G.L., Monthioux, M.: Behavior of Raman D band for pyrocarbons with crystallite size in the 2–5 nm range. Appl. Phys. A 114, 759–763 (2014)

    CAS  CrossRef  Google Scholar 

  114. Cong, C., Li, K., Zhang, X.X., Yu, T.: Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci. Rep. 3 (2013). https://dx.doi.org/10.1038/srep01195

  115. Shen, A.-L., Weng, Y.-C., Chou, T.-C.: Effect of the analytic regions on the quality trend of diamond-like/graphitic carbon ratios in Raman Spectra. Z. Naturforsch., B: Chem. Sci 65, 67–71 (2010)

    CAS  CrossRef  Google Scholar 

  116. Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)

    CAS  CrossRef  Google Scholar 

  117. Chu, P.K., Li, L.: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)

    CAS  CrossRef  Google Scholar 

  118. Campos-Delgado, J., Botello-Méndez, A.R., Algara-Siller, G., Hackens, B., Pardoen, T., Kaiser, U., Dresselhaus, M.S., Charlier, J.C., Raskin, J.P.: CVD synthesis of mono- and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure. Chem. Phys. Lett. 584, 142–146 (2013)

    CAS  CrossRef  Google Scholar 

  119. Besser, A. I., Chen, Z.: FEI Tecnai F-20 operations manual. Center for Electron Microscopy and Nanofabrication. Portland State University (last update 2010). https://www.pdx.edu/sites/www.pdx.edu.cemn/files/TEM_manual.pdf

  120. Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Bozin, E.S., Bloch, J., Proffen, T., Billinge, S.J.L.: PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter (2007). https://doi.org/10.1088/0953-8984/19/33/335219

    CrossRef  Google Scholar 

  121. Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M.: Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)

    CAS  CrossRef  Google Scholar 

  122. Proffen, T., Kim, H.: Advances in total scattering analysis. J. Mater. Chem. 19, 5078–5088 (2009)

    CAS  CrossRef  Google Scholar 

  123. Proffen, T., Billinge, S.: PDFFIT 1.3 users guide: http://www.diffpy.org/doc/pdffit/pdf_man.pdf (created in 2003). Accessed Nov. 2017

  124. Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003)

    CAS  CrossRef  Google Scholar 

  125. Downs, R.T.: The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03-13 (2006). http://rruff.info/

  126. Li, Y.: Operating procedure for Tecnai G2 STEM, 4D Labs Research Institute, Simon Fraser University (version 1.7). https://users.4dlabs.ca/uploads/documents/SOP-STEM1.pdf

  127. Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P.: Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ. Sci. Technol. 39, 1144–1151 (2005)

    CAS  CrossRef  Google Scholar 

  128. Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P.: Characterization of fine and ultrafine fly ash by electron microscopy techniques. World of Coal Ash. https://www.researchgate.net/publication/266338677_Characterization_of_Fine_and_Ultrafine_Fly_Ash_by_Electron_Microscopy_Techniques (2005). Accessed June 2018

  129. Degen, T., Sadki, M., Bron, E., König, U., Nénert, G.: The HighScore suite. Powder Diffr. 29(S2), S13–S18 (2014)

    CAS  CrossRef  Google Scholar 

  130. Bruker: X-ray Diffraction Software. https://www.bruker.com/fr/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software.html. Accessed Feb. 2018

  131. ICDD: The International Centre for Diffraction Data. www.icdd.com. Accessed Feb. 2018

  132. MIT Center for Materials Science and Engineering. http://prism.mit.edu/xray/oldsite/tutorials.htm. Accessed Feb. 2018

  133. Chung, F.H.: Quantitative interpretation of X-ray diffraction patterns of mixtures, III- simultaneous determination of a set of reference intensities. J. Appl. Crystallogr. 8, 17–19 (1974)

    CrossRef  Google Scholar 

  134. Bish, D.L., Howard, S.A.: Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21, 86–91 (2001)

    CrossRef  Google Scholar 

  135. Will, G.: The Rietveld method and the two stage method. In: Will, G. (eds.) Powder Diffraction, pp. 42–194. Springer, Berlin (2006)

    Google Scholar 

  136. Crystallography Open Database. http://www.crystallography.net/cod/. Accessed Feb. 2018

  137. Hill, R.J., Fischer, R.X.: Profile agreement indices in Rietveld and pattern- fitting analysis. J. Appl. Crystallogr. 23, 462–468 (1990)

    CAS  CrossRef  Google Scholar 

  138. Jansen, E., Schäfer, W., Will, G.: R values in analysis of powder diffraction data using Rietveld refinement. J. Appl. Crystallogr. 27, 492–496 (1994)

    CAS  CrossRef  Google Scholar 

  139. Brian, H.T.: R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006)

    CrossRef  CAS  Google Scholar 

  140. Young, R.A.: Introduction to the Rietveld method. In: Young, R.A. (ed.) The Rietveld Method, pp. 1–38. Oxford University Press, Oxford (1993)

    Google Scholar 

  141. De La Torre, A.G., Brusque, S., Aranda, M.A.G.: Rietveld quantitative amorphous content analysis. J. Appl. Crystallogr. 34, 196–202 (2001)

    CrossRef  Google Scholar 

  142. Orlhac, X., Fillet, C., Deniard, P., Dulac, A.M., Brec, R.: Determination of the crystallized fraction of a largely amorphous multiphase material by Rietveld method. J. Appl. Crystallogr. 34, 114–118 (2001)

    CAS  CrossRef  Google Scholar 

  143. Scherrer, P.: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttinger. 26, 98–100 (1918)

    Google Scholar 

  144. Langford, J.L., Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)

    CAS  CrossRef  Google Scholar 

  145. Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Mettall. 1, 22–31 (1953)

    CAS  CrossRef  Google Scholar 

  146. Marsh, H., Rodriguez-Reinoso, F.: Activated Carbon. Elsevier, Oxford (2006)

    CrossRef  Google Scholar 

  147. Ruland, W., Smarsly, B.: X-ray scattering of non-graphitic carbon: an improved method of evaluation. J. Appl. Crystallogr. 35, 624–633 (2002)

    CAS  CrossRef  Google Scholar 

  148. Manoj, B., Kunjomana, A.G.: Study of stacking structure of amorphous carbon by X-Ray diffraction technique. Int. J. Electrochem. Sci. 7, 3127–31324 (2012)

    CAS  Google Scholar 

  149. Iwashita, N., Park, C.R., Fujimoto, H., Shiraishi, M., Inagakie, M.: Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42, 710–714 (2004)

    Google Scholar 

  150. Yasuda, E-I., Inagaki, M.: X-ray diffraction method to study crystallite size and lattice constants of carbon materials. In: E-I. Yasuda, Inagaki, M., Kaneko, K., Endo, M., Oya, A., Tanabe, Y. (eds.) Carbons Allows: Novel Concepts to develop Carbon Science and Technology, pp. 161–173. Elsevier, Oxford (2003)

    Google Scholar 

Download references

Acknowledgements

The author thanks Pascal Puech and Marc Monthioux (CEMES-CNRS, Toulouse, France) for their relevant advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Weiss-Hortala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Weiss-Hortala, E. et al. (2020). Solid Residues (Biochar, Bottom Ash, Fly Ash, …). In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_15

Download citation