ASTM D5759-12, Standard guide for characterization of coal fly ash and clean coal combustion fly ash for potential uses. ASTM International, West Conshohocken (2012). www.astm.org
Antal Jr., M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)
CAS
CrossRef
Google Scholar
Lehmann, J., Joseph, S.: Biochar for Environmental Management: Science, Technology and Implementation. Earthscan from Routledge, Taylor and Francis Group, London (2015)
Google Scholar
Singh, B., Camps-Aberstain, M., Lehmann, J.: Biochar, a Guide to Analytical Methods. CRC Press, Taylor and Francis Group, Boca Raton (2017)
Google Scholar
Koziński, J.A., Saade, R.: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study. Fuel 77, 225–237 (1998)
CrossRef
Google Scholar
Watson, A.Y., Valberg, P.A.: Carbon black and soot: two different substances. Am. Ind. Hyg. Assoc. J. 62, 218–228 (2001)
CAS
Google Scholar
Reza Kholghy, M., Veshkini, A., Thomson, M.J.: The core-shell internal nanostructure of soot—a criterion to model soot maturity. Carbon 100, 508–536 (2016)
CrossRef
CAS
Google Scholar
Trubetskaya, A., Jensen, P.A., Jensen, A.D., Garcia Llamas, A.D., Umeki, K., Gardini, D., Kling, J., Bates, R.B., Glarborg, P.: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures. Appl. Energy 171, 468–482 (2016)
CAS
CrossRef
Google Scholar
Corbin, J.C., Lohmann, U., Sierau, B., Keller, A., Burtscher, H., Mensah, A.A.: Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmos. Chem. Phys. 15, 11885–11907 (2015)
CAS
CrossRef
Google Scholar
Andreae, M.O., Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148 (2006)
CAS
CrossRef
Google Scholar
Long, C.M., Nascarella, M.A., Valberg, P.A.: Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)
CAS
CrossRef
Google Scholar
Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E.C., Weiss-Hortala, E., Fiori, L.: Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manage. 47 Part A, 114–121 (2016)
CAS
CrossRef
Google Scholar
Liu, W.-J., Zeng, F.-X., Jiang, H., Zhang, X.-S.: Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol. 102, 8247–8252 (2011)
CAS
CrossRef
Google Scholar
Ahmad, M., Upamali Rajapaksha, A., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)
CAS
CrossRef
Google Scholar
Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr., C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202 (2014)
CAS
CrossRef
Google Scholar
Azargohar, R., Dalai, A.K.: Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 131, 762–773 (2006)
CAS
CrossRef
Google Scholar
Rodríguez-Reinoso, F.: The role of carbon materials in heterogeneous catalysis. Carbon 36, 159–175 (1998)
CrossRef
Google Scholar
Serp, P., Figueiredo, J.L.: Carbon Materials for Catalysis. Wiley, Hoboken (2009)
Google Scholar
Hervy, M., Berhanu, S., Weiss-Hortala, E., Chesnaud, A., Gérente, C., Villot, A., Pham Minh, D., Thorel, A., Le Coq, L., Nzihou, A.: Multi-scale characterisation of chars mineral species for tar cracking. Fuel 189, 88–97 (2017)
CAS
CrossRef
Google Scholar
Lee, J., Kim, K.-H., Kwon, E.E.: Biochar as a catalyst. Renew. Sust. Energ. Rev. 77, 70–79 (2017)
CAS
CrossRef
Google Scholar
Liu, W.-J., Jiang, H., Yu, H.-Q.: Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015)
CAS
CrossRef
Google Scholar
Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., Gómez-Serrano, V.: Preparation of activated carbon–metal oxide hybrid catalysts: textural characterization. Fuel Process. Technol. 126, 95–103 (2014)
CAS
CrossRef
Google Scholar
Qian, K., Kumar, A., Zhang, H., Bellmer, D., Huhnke, R.: Recent advances in utilization of biochar. Renew. Sust. Energ. Rev. 42, 1055–1064 (2015)
CAS
CrossRef
Google Scholar
Westra, L.: The Common Good and Environmental Governance for the Support of Life. Cambridge Scholars Publishing, Newcastle (2016)
Google Scholar
World Energy Resources Report 2016. World Energy Council, London (2016)
Google Scholar
Parent, P., Laffon, C., Marhaba, I., Ferry, D., Regier, T.Z., Ortega, I.K., Chazallon, B., Carpentier, Y., Focsa, C.: Nanoscale characterization of aircraft soot: a high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon 101, 86–100 (2016)
CAS
CrossRef
Google Scholar
Trubetskaya, A., Brown, A., Tompsett, G.A., Timko, M.T., Kling, J., Broström, M., Larsen Andersen, M., Umeki, K.: Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Appl. Energy 212, 1489–1500 (2018)
CAS
CrossRef
Google Scholar
Fals, A.E., Hadjiev, V.G., Robles Hernández, F.C.: Porous media reinforced with carbon soots. Mater. Chem. Phys. 140, 651–658 (2013)
CAS
CrossRef
Google Scholar
Fidalgo, B., Menéndez, J.Á.: Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chin. J. Catal. 32, 207–216 (2011)
CAS
CrossRef
Google Scholar
Serrano, D.P., Botas, J.A., Fierro, J.L.G., Guil-López, R., Pizzaro, P., Gómez, G.: Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials. Fuel 89, 1241–1248 (2010)
CAS
CrossRef
Google Scholar
Liu, S., Wang, Y., Wu, R., Zeng, X., Gao, S., Xu, G.: Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal. Energy Fuels 28, 58–66 (2014)
CAS
CrossRef
Google Scholar
Berhanu, S., Hervy, M., Weiss-Hortala, E., Proudhon, H., Berger, M.-H., Chesnaud, A., Faessel, M., King, A., Pham Minh, D., Villot, A., Gérente, C., Thorel, A., Le Coq, L., Nzihou, A.: Advanced characterization unravels the structure and reactivity of wood-based chars. J. Anal. Appl. Pyrol. 130, 79–89 (2018)
CAS
CrossRef
Google Scholar
Muradov, N.: Catalysis of methane decomposition over elemental carbon. Catal. Commun. 2, 89–94 (2001)
CAS
CrossRef
Google Scholar
Muradov, N., Smith, F., T-Raissi, A.: Catalytic activity of carbons for methane decomposition reaction. Catal. Today 102, 225–233 (2005)
CAS
CrossRef
Google Scholar
Suelves, I., Pinilla, J.L., Lázaro, M.J., Moliner, R.: Carbonaceous materials as catalysts for decomposition of methane. Chem. Eng. J. 140, 432–438 (2008)
CAS
CrossRef
Google Scholar
Ducousso, M., Weiss-Hortala, E., Nzihou, A., Castaldi, M.J.: Reactivity enhancement of gasification biochars for catalytic applications. Fuel 159, 491–499 (2015)
CAS
CrossRef
Google Scholar
Nzihou, A., Stanmore, B., Sharrock, P.: A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58, 305–317 (2013)
CAS
CrossRef
Google Scholar
Wang, F.-J., Zhang, S., Chen, Z.-D., Liu, C., Wang, Y.-G.: Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal. J. Anal. Appl. Pyrol. 105, 269–275 (2014)
CAS
CrossRef
Google Scholar
Klinghoffer, N.B., Castaldi, M.J., Nzihou, A.: Influence of char composition and inorganics on catalytic activity of char from biomass gasification. Fuel 157, 37–47 (2015)
CAS
CrossRef
Google Scholar
Hervy, M., Pham Minh, D., Gérente, C., Weiss-Hortala, E., Nzihou, A., Villot, A., Le Coq, L.: H2S removal from syngas using wastes pyrolysis chars. Chem. Eng. J. 334, 2179–2189 (2018)
CAS
CrossRef
Google Scholar
Sizmur, T., Fresno, T., Akgül, G., Frost, H., Moreno-Jiménez, E.: Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017)
CAS
CrossRef
Google Scholar
Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J.: All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013)
CAS
CrossRef
Google Scholar
Lu, L., Sahajwalla, V., Kong, C., Harris, D.: Quantative X-ray diffraction analysis and its application to various coals. Carbon 39, 1821–1833 (2001)
CAS
CrossRef
Google Scholar
Monthioux, M., Noé, L., Kobylko, M., Wang, Y., Cazares-Huerta, T.C., Pénicaud, A.: Determining the structure of graphene-based flakes from their morphotype. Carbon 115, 128–133 (2017)
CAS
CrossRef
Google Scholar
Smith, M.A., Foley, H.C., Lobo, R.F.: A simple model describes the PDF of a non-graphitizing carbon. Carbon 42, 2041–2048 (2004)
CAS
CrossRef
Google Scholar
Gracia-Espino, E., López-Urías, F., Kim, Y.A., Hayashi, T., Muramatsu, H., Endo, M., Terrones, H., Terrones, M., Dresselhaus, M.S.: Novel carbon-based nanomaterials: graphene and graphitic nanoribbons. In: Somiya, S., Kaneno, M. (eds.) Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, pp. 61–87. Elsevier, Waltham (2013)
CrossRef
Google Scholar
Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H.: Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)
CrossRef
CAS
Google Scholar
Araujo, P.T., Terrones, M., Dresselhaus, M.S.: Defects and impurities in graphene-like materials. Mater. Today 15, 98–109 (2012)
CAS
CrossRef
Google Scholar
Pré, P., Huchet, G., Jeulin, D., Rouzaud, J.N., Sennour, M., Thorel, A.: A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images. Carbon 52, 239–258 (2013)
CrossRef
CAS
Google Scholar
Anees, P., Valsakumar, M.C., Chandra, S., Panigrahi, B.K.: Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures. Model. Simul. Mater. Sci. (2014). https://doi.org/10.1088/0965-0393/22/3/035016
CrossRef
Google Scholar
Youcai, Z.: Pollution Control and Resource Recovery: Municipal Solid Wastes Incineration Bottom Ash and Fly Ash. Butterworth-Heinemann (2017)
Google Scholar
Liyanage, M., Jayaranjan, D., van Hullebusch, E.D., Annachhatre, A.P.: Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Biotechnol. 13, 467–486 (2014)
CrossRef
CAS
Google Scholar
Maschio, S., Tonello, G., Piani, L., Furlani, E.: Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength. Chemosphere 85, 666–671 (2011)
CAS
CrossRef
Google Scholar
Ulewicz, M., Jura, J.: Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar. In: E3S Web of Conferences, vol. 18 (2017). https://doi.org/10.1051/e3sconf/201712301029
CrossRef
CAS
Google Scholar
Valentim, B., Białecka, B., Gonçalves, P.A., Guedes, A., Guimarães, R., Cruceru, M., Całus-Moszko, J., Popescu, L.G., Predeanu, G., Santos, A.C.: Undifferentiated inorganics in coal fly ash and bottom ash: calcispheres, magnesiacalcispheres, and magnesiaspheres. Minerals (2018). https://doi.org/10.3390/min8040140
CrossRef
Google Scholar
Chen, J., Fang, D., Duan, F.: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor. Appl. Energy 218, 54–65 (2018)
CrossRef
Google Scholar
Thielmann, F., Burnett, D.: Isotherm types and adsorption mechanisms of solvents on pharmaceutical excipients. Application Note 26, Surface Measurement Systems Ltd.
Google Scholar
Sullivan, P.D., Stone, B.R., Hashisho, Z., Rood, M.J.: Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13, 173–189 (2007)
CAS
CrossRef
Google Scholar
García-Pérez, J.V., Cárcel, J.A., Clemente, G., Mulet, A.: Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT Food Sci. Technol. 41, 18–25 (2008)
CrossRef
CAS
Google Scholar
Furmaniak, S., Gauden, P.A., Terzyk, A.P., Rychlicki, G.: Water adsorption on carbons—critical review of the most popular analytical approaches. Adv. Colloid Interface Sci. 137, 82–143 (2008)
CAS
CrossRef
Google Scholar
Hill, C.A.S., Norton, A.J., Newman, G.: The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44, 497–514 (2010)
CAS
CrossRef
Google Scholar
Nguyen, C., Do, D.D.: The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 39, 1327–1336 (2001)
CAS
CrossRef
Google Scholar
Kapoor, A., Ritter, J.A., Yang, R.T.: On the Dubinin-Radushkevich equation for adsorption in microporous solids in the Henry’s law region. Langmuir 5, 1118–1121 (1989)
CAS
CrossRef
Google Scholar
Stoeckli, F.: Dubinin’s theory and its contribution to adsorption science. Russ. Chem. Bull. 50, 2265–2272 (2001)
CAS
CrossRef
Google Scholar
Gauden, P.A.: Does the Dubinin-Serpinsky theory adequately describe water adsorption on adsorbents with high-energy centers? J. Colloid Interface Sci. 282, 249–260 (2005)
CAS
CrossRef
Google Scholar
Williams, D. R., Levoguer, C.L.: Measuring BET surface areas using organic probe molecules. Application Note 18, Surface Measurement Systems
Google Scholar
Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767–773 (2000)
CAS
CrossRef
Google Scholar
Rutherford, S.W.: Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves. Langmuir 22, 702–708 (2006)
CAS
CrossRef
Google Scholar
Charrière, D., Behra, P.: Water sorption on coals. J. Colloid Interface Sci. 344, 460–467 (2010)
CrossRef
CAS
Google Scholar
Zou, L., Gong, L., Xu, P., Feng, G., Liu, H.: Modified GAB model for correlating multilayer adsorption equilibrium data. Sep. Purif. Technol. 161, 38–43 (2016)
CAS
CrossRef
Google Scholar
Bravo-Osuna, I., Ferrero, C., Jiménez-Castellanos, M.R.: Water sorption–desorption behaviour of methyl methacrylate–starch copolymers: effect of hydrophobic graft and drying method. Eur. J. Pharm. Biopharm. 59, 537–548 (2005)
CAS
CrossRef
Google Scholar
Timmermann, E.O.: Multilayer sorption parameters: BET or GAB values? Colloids Surf. A 220, 235–260 (2003)
CAS
CrossRef
Google Scholar
Kachrimanis, K., Noisternig, M.F., Griesser, U.J., Malamataris, S.: Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Eur. J. Pharm. Biopharm. 64, 307–315 (2006)
CAS
CrossRef
Google Scholar
Loughlin, K.F., Hassan, M.M., Fatehi, A.I., Zahur, M.: Rate and equilibrium sorption parameters for nitrogen and methane on carbon molecular sieve. Gas Sep. Purif. 7, 264–273 (1993)
CAS
CrossRef
Google Scholar
Xie, Y., Hill, C.A.S., Jalaludin, Z., Curling, S.F., Anandjiwala, R.D., Norton, A.J., Newman, G.: The dynamic water vapour sorption behavior of natural fibres and kinetic analysis using the parallel exponential kinetics model. J. Mater. Sci. 46, 479–489 (2011)
CAS
CrossRef
Google Scholar
Popescu, C.-M., Hill, C.A.S., Anthony, R., Ormondroyd, G., Curling, S.: Equilibrium and dynamic vapour water sorption properties of biochar derived from apple wood. Polym. Degrad. Stab. 111, 263–268 (2015)
CAS
CrossRef
Google Scholar
Fletcher, A.J., Uygur, Y., Mark Thomas, K.: Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 111, 8349–8359 (2007)
CAS
CrossRef
Google Scholar
Foley, N.J., Thomas, K.M., Forshaw, P.L., Stanton, D., Norman, P.R.: Kinetics of water vapor adsorption on activated carbon. Langmuir 13, 2083–2089 (1997)
CAS
CrossRef
Google Scholar
Harding, A.W., Foley, N.J., Norman, P.R., Francis, D.C., Thomas, K.M.: Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons. Langmuir 14, 3858–3864 (1998)
CAS
CrossRef
Google Scholar
Cossarutto, L., Zimny, T., Kaczmarczyk, J., Siemieniewska, T., Bimer, J., Webera, J.V.: Transport and sorption of water vapour in activated carbons. Carbon 39, 2339–2346 (2001)
CAS
CrossRef
Google Scholar
Fletcher, A.J., Benham, M.J., Thomas, K.M.: Multicomponent vapor sorption on active carbon by combined microgravimetry and dynamic sampling mass spectrometry. J. Phys. Chem. B 106, 7474–7482 (2002)
CAS
CrossRef
Google Scholar
Fletcher, A.J., Yüzak, Y., Thomas, K.M.: Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004 (2006)
CAS
CrossRef
Google Scholar
Laine, N.R., Vastola, F.J., Walker Jr., P.N.: The importance of active surface area in the carbon-oxygen reaction. J. Phys. Chem. 67, 2030–2034 (1963)
CAS
CrossRef
Google Scholar
Ehrburger, P., Louys, F., Lahaye, J.: The concept of active sites applied to the study of carbon reactivity. Carbon 27, 389–393 (1989)
CAS
CrossRef
Google Scholar
Burg, P., Abraham, M.H., Cagniant, D.: Methods of determining polar and non-polar sites on carbonaceous adsorbents. The contribution of the linear solvation energy relationship approach. Carbon 41, 867–879 (2003)
CAS
CrossRef
Google Scholar
Groszek, A.J.: Graphitic and polar surface sites in carbonaceous solids. Carbon 25, 717–722 (1987)
CAS
CrossRef
Google Scholar
López-Garzón, F.J., Pydan, M., Domingo-Garcia, M.: Studies of the surface properties of active carbons by inverse gas chromatography at infinite dilution. Langmuir 9, 531–536 (1993)
CrossRef
Google Scholar
Tisserand, C., Calvet, R., Patry, S., Galet, L., Doods, J.A.: Comparison of two techniques for the surface analysis of alumina (Al2O3): inverse gas chromatography at finite concentration (IGC-FC) and dynamic vapor sorption (DVS). Powder Technol. 190, 53–58 (2009)
CAS
CrossRef
Google Scholar
Nowak, E., Combes, G., Stitt, E.H., Pacek, A.W.: A comparison of contact angle measurement techniques applied to highly porous catalyst supports. Powder Technol. 233, 52–64 (2013)
CAS
CrossRef
Google Scholar
Burnett, D., Thielmann, F.: Organic solvent sorption using a dynamic vapour sorption instrument-an overview. Application Note 103, Surface Measurement Systems Ltd., (last update 24/11/06)
Google Scholar
Levoguer, C.L., Williams, D.R.: Measurement of the surface energies of pharmaceutical powders using a novel vapour adsorption method. Application Note 17, Surface Measurement Systems Ltd.
Google Scholar
Burnett, D., Thielmann, F., Booth, J.: Determining the heat of sorption on organic and inorganic powders using DVS. Application Note 19, Surface Measurement Systems Ltd.
Google Scholar
Klomkliang, N., Kaewmanee, R., Saimoey, S., Intarayothy, S., Do, D.D.: Adsorption of water and methanol on highly graphitized thermal carbon black: the effects of functional group and temperature on the isosteric heat at low loadings. Carbon 99, 361–369 (2016)
CAS
CrossRef
Google Scholar
Argyropoulos, D., Alex, R., Kohler, R., Müller, J.: Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci. Technol. 47, 324–331 (2012)
CAS
CrossRef
Google Scholar
Choudhury, D., Sahu, J.K., Sharma, G.D.: Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots. Ind. Crops Prod. 33, 211–216 (2011)
CrossRef
Google Scholar
Quirijns, E.J., van Boxtel, A.J.B., Loon, W.K.P., van Straten, G.: Sorption isotherms, GAB parameters and isosteric heat of sorption. J. Sci. Food Agric. 85, 1805–1814 (2005)
CAS
CrossRef
Google Scholar
Sarkisov, L., Centineo, A., Brandani, S.: Molecular simulation and experiments of water adsorption in a high surface area activated carbon: hysteresis, scanning curves and spatial organization of water clusters. Carbon 118, 127–138 (2017)
CAS
CrossRef
Google Scholar
Ducousso, M.: Gasification biochar reactivity toward methane cracking. Ph.D. thesis, Université de Toulouse (2015). https://tel.archives-ouvertes.fr/tel-01411838
Figueiredo, J., Pereira, M.F., Freitas, M.M., Órfão, J.J.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999)
CAS
CrossRef
Google Scholar
Zhou, J.H., Sui, Z.J., Zhu, J., Li, P., Chen, D., Dai, Y.C., Yuan, W.-K.: Characterization of surface oxygen complexes on carbon nanofibers by TPD. XPS FT-IR. Carbon 45, 785–796 (2007)
CAS
CrossRef
Google Scholar
Szymański, G.S., Karpiński, Z., Biniak, S., Świa̧tkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639 (2002)
CrossRef
Google Scholar
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)
CAS
CrossRef
Google Scholar
Asadullah, M., Zhang, S., Min, Z., Yimsiri, P., Li, C.Z.: Effects of biomass char structure on its gasification reactivity. Bioresour. Technol. 101, 7935–7943 (2010)
CAS
CrossRef
Google Scholar
Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 368, 5355–5377 (2010)
CAS
CrossRef
Google Scholar
McDonald-Wharry, J., Manley-Harris, M., Pickering, K.: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon 59, 383–405 (2013)
CAS
CrossRef
Google Scholar
Vautard, F., Dentzer, J., Nardin, M., Schultz, J., Defoort, B.: Influence of surface defects on the tensile strength of carbon fibers. Appl. Surf. Sci. 322, 185–193 (2014)
CAS
CrossRef
Google Scholar
Casari, C.S., Tommasini, M., Tykwinski, R.R., Milani, A.: Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)
CAS
CrossRef
Google Scholar
Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005)
CAS
CrossRef
Google Scholar
Li, X., Hayashi, J., Li, C.Z.: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85, 1700–1707 (2006)
CAS
CrossRef
Google Scholar
Li, X., Hayashi, J., Li, C.Z.: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 85, 1509–1517 (2006)
CAS
CrossRef
Google Scholar
Zickler, G.A., Smarsly, B., Gierlinger, N., Peterlik, H., Paris, O.: A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44, 3239–3246 (2006)
CAS
CrossRef
Google Scholar
Keown, D.M., Li, X., Hayashi, J.I., Li, C.Z.: Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Process. Technol. 89, 1429–1435 (2008)
CAS
CrossRef
Google Scholar
Mallet-Ladeira, P., Puech, P., Weisbecker, P., Vignoles, G.L., Monthioux, M.: Behavior of Raman D band for pyrocarbons with crystallite size in the 2–5 nm range. Appl. Phys. A 114, 759–763 (2014)
CAS
CrossRef
Google Scholar
Cong, C., Li, K., Zhang, X.X., Yu, T.: Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci. Rep. 3 (2013). https://dx.doi.org/10.1038/srep01195
Shen, A.-L., Weng, Y.-C., Chou, T.-C.: Effect of the analytic regions on the quality trend of diamond-like/graphitic carbon ratios in Raman Spectra. Z. Naturforsch., B: Chem. Sci 65, 67–71 (2010)
CAS
CrossRef
Google Scholar
Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)
CAS
CrossRef
Google Scholar
Chu, P.K., Li, L.: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)
CAS
CrossRef
Google Scholar
Campos-Delgado, J., Botello-Méndez, A.R., Algara-Siller, G., Hackens, B., Pardoen, T., Kaiser, U., Dresselhaus, M.S., Charlier, J.C., Raskin, J.P.: CVD synthesis of mono- and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure. Chem. Phys. Lett. 584, 142–146 (2013)
CAS
CrossRef
Google Scholar
Besser, A. I., Chen, Z.: FEI Tecnai F-20 operations manual. Center for Electron Microscopy and Nanofabrication. Portland State University (last update 2010). https://www.pdx.edu/sites/www.pdx.edu.cemn/files/TEM_manual.pdf
Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Bozin, E.S., Bloch, J., Proffen, T., Billinge, S.J.L.: PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter (2007). https://doi.org/10.1088/0953-8984/19/33/335219
CrossRef
Google Scholar
Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M.: Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)
CAS
CrossRef
Google Scholar
Proffen, T., Kim, H.: Advances in total scattering analysis. J. Mater. Chem. 19, 5078–5088 (2009)
CAS
CrossRef
Google Scholar
Proffen, T., Billinge, S.: PDFFIT 1.3 users guide: http://www.diffpy.org/doc/pdffit/pdf_man.pdf (created in 2003). Accessed Nov. 2017
Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003)
CAS
CrossRef
Google Scholar
Downs, R.T.: The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03-13 (2006). http://rruff.info/
Li, Y.: Operating procedure for Tecnai G2 STEM, 4D Labs Research Institute, Simon Fraser University (version 1.7). https://users.4dlabs.ca/uploads/documents/SOP-STEM1.pdf
Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P.: Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ. Sci. Technol. 39, 1144–1151 (2005)
CAS
CrossRef
Google Scholar
Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P.: Characterization of fine and ultrafine fly ash by electron microscopy techniques. World of Coal Ash. https://www.researchgate.net/publication/266338677_Characterization_of_Fine_and_Ultrafine_Fly_Ash_by_Electron_Microscopy_Techniques (2005). Accessed June 2018
Degen, T., Sadki, M., Bron, E., König, U., Nénert, G.: The HighScore suite. Powder Diffr. 29(S2), S13–S18 (2014)
CAS
CrossRef
Google Scholar
Bruker: X-ray Diffraction Software. https://www.bruker.com/fr/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software.html. Accessed Feb. 2018
ICDD: The International Centre for Diffraction Data. www.icdd.com. Accessed Feb. 2018
MIT Center for Materials Science and Engineering. http://prism.mit.edu/xray/oldsite/tutorials.htm. Accessed Feb. 2018
Chung, F.H.: Quantitative interpretation of X-ray diffraction patterns of mixtures, III- simultaneous determination of a set of reference intensities. J. Appl. Crystallogr. 8, 17–19 (1974)
CrossRef
Google Scholar
Bish, D.L., Howard, S.A.: Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21, 86–91 (2001)
CrossRef
Google Scholar
Will, G.: The Rietveld method and the two stage method. In: Will, G. (eds.) Powder Diffraction, pp. 42–194. Springer, Berlin (2006)
Google Scholar
Crystallography Open Database. http://www.crystallography.net/cod/. Accessed Feb. 2018
Hill, R.J., Fischer, R.X.: Profile agreement indices in Rietveld and pattern- fitting analysis. J. Appl. Crystallogr. 23, 462–468 (1990)
CAS
CrossRef
Google Scholar
Jansen, E., Schäfer, W., Will, G.: R values in analysis of powder diffraction data using Rietveld refinement. J. Appl. Crystallogr. 27, 492–496 (1994)
CAS
CrossRef
Google Scholar
Brian, H.T.: R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006)
CrossRef
CAS
Google Scholar
Young, R.A.: Introduction to the Rietveld method. In: Young, R.A. (ed.) The Rietveld Method, pp. 1–38. Oxford University Press, Oxford (1993)
Google Scholar
De La Torre, A.G., Brusque, S., Aranda, M.A.G.: Rietveld quantitative amorphous content analysis. J. Appl. Crystallogr. 34, 196–202 (2001)
CrossRef
Google Scholar
Orlhac, X., Fillet, C., Deniard, P., Dulac, A.M., Brec, R.: Determination of the crystallized fraction of a largely amorphous multiphase material by Rietveld method. J. Appl. Crystallogr. 34, 114–118 (2001)
CAS
CrossRef
Google Scholar
Scherrer, P.: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttinger. 26, 98–100 (1918)
Google Scholar
Langford, J.L., Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)
CAS
CrossRef
Google Scholar
Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Mettall. 1, 22–31 (1953)
CAS
CrossRef
Google Scholar
Marsh, H., Rodriguez-Reinoso, F.: Activated Carbon. Elsevier, Oxford (2006)
CrossRef
Google Scholar
Ruland, W., Smarsly, B.: X-ray scattering of non-graphitic carbon: an improved method of evaluation. J. Appl. Crystallogr. 35, 624–633 (2002)
CAS
CrossRef
Google Scholar
Manoj, B., Kunjomana, A.G.: Study of stacking structure of amorphous carbon by X-Ray diffraction technique. Int. J. Electrochem. Sci. 7, 3127–31324 (2012)
CAS
Google Scholar
Iwashita, N., Park, C.R., Fujimoto, H., Shiraishi, M., Inagakie, M.: Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42, 710–714 (2004)
Google Scholar
Yasuda, E-I., Inagaki, M.: X-ray diffraction method to study crystallite size and lattice constants of carbon materials. In: E-I. Yasuda, Inagaki, M., Kaneko, K., Endo, M., Oya, A., Tanabe, Y. (eds.) Carbons Allows: Novel Concepts to develop Carbon Science and Technology, pp. 161–173. Elsevier, Oxford (2003)
Google Scholar