Abstract
Solid co-products from biochemical, chemical and thermochemical processes of biomass and biowaste have gained momentum in utilization as secondary raw materials. These solids are carbon-based or mineral-based materials, and for their suitable use in a number of fields, various properties should be determined. This chapter addresses advanced techniques used to determine physical and chemical properties of these solid residues. For each technique, the basics and protocols are described. Post-treatment procedures and interpretation of the results obtained are also provided for some residues.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
ASTM D5759-12, Standard guide for characterization of coal fly ash and clean coal combustion fly ash for potential uses. ASTM International, West Conshohocken (2012). www.astm.org
Antal Jr., M.J., Grønli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)
Lehmann, J., Joseph, S.: Biochar for Environmental Management: Science, Technology and Implementation. Earthscan from Routledge, Taylor and Francis Group, London (2015)
Singh, B., Camps-Aberstain, M., Lehmann, J.: Biochar, a Guide to Analytical Methods. CRC Press, Taylor and Francis Group, Boca Raton (2017)
Koziński, J.A., Saade, R.: Effect of biomass burning on the formation of soot particles and heavy hydrocarbons. An experimental study. Fuel 77, 225–237 (1998)
Watson, A.Y., Valberg, P.A.: Carbon black and soot: two different substances. Am. Ind. Hyg. Assoc. J. 62, 218–228 (2001)
Reza Kholghy, M., Veshkini, A., Thomson, M.J.: The core-shell internal nanostructure of soot—a criterion to model soot maturity. Carbon 100, 508–536 (2016)
Trubetskaya, A., Jensen, P.A., Jensen, A.D., Garcia Llamas, A.D., Umeki, K., Gardini, D., Kling, J., Bates, R.B., Glarborg, P.: Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures. Appl. Energy 171, 468–482 (2016)
Corbin, J.C., Lohmann, U., Sierau, B., Keller, A., Burtscher, H., Mensah, A.A.: Black carbon surface oxidation and organic composition of beech-wood soot aerosols. Atmos. Chem. Phys. 15, 11885–11907 (2015)
Andreae, M.O., Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148 (2006)
Long, C.M., Nascarella, M.A., Valberg, P.A.: Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions. Environ. Pollut. 181, 271–286 (2013)
Basso, D., Patuzzi, F., Castello, D., Baratieri, M., Rada, E.C., Weiss-Hortala, E., Fiori, L.: Agro-industrial waste to solid biofuel through hydrothermal carbonization. Waste Manage. 47 Part A, 114–121 (2016)
Liu, W.-J., Zeng, F.-X., Jiang, H., Zhang, X.-S.: Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol. 102, 8247–8252 (2011)
Ahmad, M., Upamali Rajapaksha, A., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)
Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr., C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202 (2014)
Azargohar, R., Dalai, A.K.: Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 131, 762–773 (2006)
Rodríguez-Reinoso, F.: The role of carbon materials in heterogeneous catalysis. Carbon 36, 159–175 (1998)
Serp, P., Figueiredo, J.L.: Carbon Materials for Catalysis. Wiley, Hoboken (2009)
Hervy, M., Berhanu, S., Weiss-Hortala, E., Chesnaud, A., Gérente, C., Villot, A., Pham Minh, D., Thorel, A., Le Coq, L., Nzihou, A.: Multi-scale characterisation of chars mineral species for tar cracking. Fuel 189, 88–97 (2017)
Lee, J., Kim, K.-H., Kwon, E.E.: Biochar as a catalyst. Renew. Sust. Energ. Rev. 77, 70–79 (2017)
Liu, W.-J., Jiang, H., Yu, H.-Q.: Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015)
Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., Gómez-Serrano, V.: Preparation of activated carbon–metal oxide hybrid catalysts: textural characterization. Fuel Process. Technol. 126, 95–103 (2014)
Qian, K., Kumar, A., Zhang, H., Bellmer, D., Huhnke, R.: Recent advances in utilization of biochar. Renew. Sust. Energ. Rev. 42, 1055–1064 (2015)
Westra, L.: The Common Good and Environmental Governance for the Support of Life. Cambridge Scholars Publishing, Newcastle (2016)
World Energy Resources Report 2016. World Energy Council, London (2016)
Parent, P., Laffon, C., Marhaba, I., Ferry, D., Regier, T.Z., Ortega, I.K., Chazallon, B., Carpentier, Y., Focsa, C.: Nanoscale characterization of aircraft soot: a high-resolution transmission electron microscopy, Raman spectroscopy, X-ray photoelectron and near-edge X-ray absorption spectroscopy study. Carbon 101, 86–100 (2016)
Trubetskaya, A., Brown, A., Tompsett, G.A., Timko, M.T., Kling, J., Broström, M., Larsen Andersen, M., Umeki, K.: Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols. Appl. Energy 212, 1489–1500 (2018)
Fals, A.E., Hadjiev, V.G., Robles Hernández, F.C.: Porous media reinforced with carbon soots. Mater. Chem. Phys. 140, 651–658 (2013)
Fidalgo, B., Menéndez, J.Á.: Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chin. J. Catal. 32, 207–216 (2011)
Serrano, D.P., Botas, J.A., Fierro, J.L.G., Guil-López, R., Pizzaro, P., Gómez, G.: Hydrogen production by methane decomposition: origin of the catalytic activity of carbon materials. Fuel 89, 1241–1248 (2010)
Liu, S., Wang, Y., Wu, R., Zeng, X., Gao, S., Xu, G.: Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal. Energy Fuels 28, 58–66 (2014)
Berhanu, S., Hervy, M., Weiss-Hortala, E., Proudhon, H., Berger, M.-H., Chesnaud, A., Faessel, M., King, A., Pham Minh, D., Villot, A., Gérente, C., Thorel, A., Le Coq, L., Nzihou, A.: Advanced characterization unravels the structure and reactivity of wood-based chars. J. Anal. Appl. Pyrol. 130, 79–89 (2018)
Muradov, N.: Catalysis of methane decomposition over elemental carbon. Catal. Commun. 2, 89–94 (2001)
Muradov, N., Smith, F., T-Raissi, A.: Catalytic activity of carbons for methane decomposition reaction. Catal. Today 102, 225–233 (2005)
Suelves, I., Pinilla, J.L., Lázaro, M.J., Moliner, R.: Carbonaceous materials as catalysts for decomposition of methane. Chem. Eng. J. 140, 432–438 (2008)
Ducousso, M., Weiss-Hortala, E., Nzihou, A., Castaldi, M.J.: Reactivity enhancement of gasification biochars for catalytic applications. Fuel 159, 491–499 (2015)
Nzihou, A., Stanmore, B., Sharrock, P.: A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58, 305–317 (2013)
Wang, F.-J., Zhang, S., Chen, Z.-D., Liu, C., Wang, Y.-G.: Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal. J. Anal. Appl. Pyrol. 105, 269–275 (2014)
Klinghoffer, N.B., Castaldi, M.J., Nzihou, A.: Influence of char composition and inorganics on catalytic activity of char from biomass gasification. Fuel 157, 37–47 (2015)
Hervy, M., Pham Minh, D., Gérente, C., Weiss-Hortala, E., Nzihou, A., Villot, A., Le Coq, L.: H2S removal from syngas using wastes pyrolysis chars. Chem. Eng. J. 334, 2179–2189 (2018)
Sizmur, T., Fresno, T., Akgül, G., Frost, H., Moreno-Jiménez, E.: Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 246, 34–47 (2017)
Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J.: All in the graphene family—a recommended nomenclature for two-dimensional carbon materials. Carbon 65, 1–6 (2013)
Lu, L., Sahajwalla, V., Kong, C., Harris, D.: Quantative X-ray diffraction analysis and its application to various coals. Carbon 39, 1821–1833 (2001)
Monthioux, M., Noé, L., Kobylko, M., Wang, Y., Cazares-Huerta, T.C., Pénicaud, A.: Determining the structure of graphene-based flakes from their morphotype. Carbon 115, 128–133 (2017)
Smith, M.A., Foley, H.C., Lobo, R.F.: A simple model describes the PDF of a non-graphitizing carbon. Carbon 42, 2041–2048 (2004)
Gracia-Espino, E., López-Urías, F., Kim, Y.A., Hayashi, T., Muramatsu, H., Endo, M., Terrones, H., Terrones, M., Dresselhaus, M.S.: Novel carbon-based nanomaterials: graphene and graphitic nanoribbons. In: Somiya, S., Kaneno, M. (eds.) Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, pp. 61–87. Elsevier, Waltham (2013)
Terrones, M., Botello-Méndez, A.R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y.I., Rodríguez-Macías, F.J., Elías, A.L., Muñoz-Sandoval, E., Cano-Márquez, A.G., Charlier, J.C., Terrones, H.: Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010)
Araujo, P.T., Terrones, M., Dresselhaus, M.S.: Defects and impurities in graphene-like materials. Mater. Today 15, 98–109 (2012)
Pré, P., Huchet, G., Jeulin, D., Rouzaud, J.N., Sennour, M., Thorel, A.: A new approach to characterize the nanostructure of activated carbons from mathematical morphology applied to high resolution transmission electron microscopy images. Carbon 52, 239–258 (2013)
Anees, P., Valsakumar, M.C., Chandra, S., Panigrahi, B.K.: Ab initio study on stacking sequences, free energy, dynamical stability and potential energy surfaces of graphite structures. Model. Simul. Mater. Sci. (2014). https://doi.org/10.1088/0965-0393/22/3/035016
Youcai, Z.: Pollution Control and Resource Recovery: Municipal Solid Wastes Incineration Bottom Ash and Fly Ash. Butterworth-Heinemann (2017)
Liyanage, M., Jayaranjan, D., van Hullebusch, E.D., Annachhatre, A.P.: Reuse options for coal fired power plant bottom ash and fly ash. Rev. Environ. Sci. Biotechnol. 13, 467–486 (2014)
Maschio, S., Tonello, G., Piani, L., Furlani, E.: Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength. Chemosphere 85, 666–671 (2011)
Ulewicz, M., Jura, J.: Effect of fly and bottom ash mixture from combustion of biomass on strength of cement mortar. In: E3S Web of Conferences, vol. 18 (2017). https://doi.org/10.1051/e3sconf/201712301029
Valentim, B., Białecka, B., Gonçalves, P.A., Guedes, A., Guimarães, R., Cruceru, M., Całus-Moszko, J., Popescu, L.G., Predeanu, G., Santos, A.C.: Undifferentiated inorganics in coal fly ash and bottom ash: calcispheres, magnesiacalcispheres, and magnesiaspheres. Minerals (2018). https://doi.org/10.3390/min8040140
Chen, J., Fang, D., Duan, F.: Pore characteristics and fractal properties of biochar obtained from the pyrolysis of coarse wood in a fluidized-bed reactor. Appl. Energy 218, 54–65 (2018)
Thielmann, F., Burnett, D.: Isotherm types and adsorption mechanisms of solvents on pharmaceutical excipients. Application Note 26, Surface Measurement Systems Ltd.
Sullivan, P.D., Stone, B.R., Hashisho, Z., Rood, M.J.: Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13, 173–189 (2007)
García-Pérez, J.V., Cárcel, J.A., Clemente, G., Mulet, A.: Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT Food Sci. Technol. 41, 18–25 (2008)
Furmaniak, S., Gauden, P.A., Terzyk, A.P., Rychlicki, G.: Water adsorption on carbons—critical review of the most popular analytical approaches. Adv. Colloid Interface Sci. 137, 82–143 (2008)
Hill, C.A.S., Norton, A.J., Newman, G.: The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci. Technol. 44, 497–514 (2010)
Nguyen, C., Do, D.D.: The Dubinin-Radushkevich equation and the underlying microscopic adsorption description. Carbon 39, 1327–1336 (2001)
Kapoor, A., Ritter, J.A., Yang, R.T.: On the Dubinin-Radushkevich equation for adsorption in microporous solids in the Henry’s law region. Langmuir 5, 1118–1121 (1989)
Stoeckli, F.: Dubinin’s theory and its contribution to adsorption science. Russ. Chem. Bull. 50, 2265–2272 (2001)
Gauden, P.A.: Does the Dubinin-Serpinsky theory adequately describe water adsorption on adsorbents with high-energy centers? J. Colloid Interface Sci. 282, 249–260 (2005)
Williams, D. R., Levoguer, C.L.: Measuring BET surface areas using organic probe molecules. Application Note 18, Surface Measurement Systems
Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38, 767–773 (2000)
Rutherford, S.W.: Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves. Langmuir 22, 702–708 (2006)
Charrière, D., Behra, P.: Water sorption on coals. J. Colloid Interface Sci. 344, 460–467 (2010)
Zou, L., Gong, L., Xu, P., Feng, G., Liu, H.: Modified GAB model for correlating multilayer adsorption equilibrium data. Sep. Purif. Technol. 161, 38–43 (2016)
Bravo-Osuna, I., Ferrero, C., Jiménez-Castellanos, M.R.: Water sorption–desorption behaviour of methyl methacrylate–starch copolymers: effect of hydrophobic graft and drying method. Eur. J. Pharm. Biopharm. 59, 537–548 (2005)
Timmermann, E.O.: Multilayer sorption parameters: BET or GAB values? Colloids Surf. A 220, 235–260 (2003)
Kachrimanis, K., Noisternig, M.F., Griesser, U.J., Malamataris, S.: Dynamic moisture sorption and desorption of standard and silicified microcrystalline cellulose. Eur. J. Pharm. Biopharm. 64, 307–315 (2006)
Loughlin, K.F., Hassan, M.M., Fatehi, A.I., Zahur, M.: Rate and equilibrium sorption parameters for nitrogen and methane on carbon molecular sieve. Gas Sep. Purif. 7, 264–273 (1993)
Xie, Y., Hill, C.A.S., Jalaludin, Z., Curling, S.F., Anandjiwala, R.D., Norton, A.J., Newman, G.: The dynamic water vapour sorption behavior of natural fibres and kinetic analysis using the parallel exponential kinetics model. J. Mater. Sci. 46, 479–489 (2011)
Popescu, C.-M., Hill, C.A.S., Anthony, R., Ormondroyd, G., Curling, S.: Equilibrium and dynamic vapour water sorption properties of biochar derived from apple wood. Polym. Degrad. Stab. 111, 263–268 (2015)
Fletcher, A.J., Uygur, Y., Mark Thomas, K.: Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 111, 8349–8359 (2007)
Foley, N.J., Thomas, K.M., Forshaw, P.L., Stanton, D., Norman, P.R.: Kinetics of water vapor adsorption on activated carbon. Langmuir 13, 2083–2089 (1997)
Harding, A.W., Foley, N.J., Norman, P.R., Francis, D.C., Thomas, K.M.: Diffusion barriers in the kinetics of water vapor adsorption/desorption on activated carbons. Langmuir 14, 3858–3864 (1998)
Cossarutto, L., Zimny, T., Kaczmarczyk, J., Siemieniewska, T., Bimer, J., Webera, J.V.: Transport and sorption of water vapour in activated carbons. Carbon 39, 2339–2346 (2001)
Fletcher, A.J., Benham, M.J., Thomas, K.M.: Multicomponent vapor sorption on active carbon by combined microgravimetry and dynamic sampling mass spectrometry. J. Phys. Chem. B 106, 7474–7482 (2002)
Fletcher, A.J., Yüzak, Y., Thomas, K.M.: Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon. Carbon 44, 989–1004 (2006)
Laine, N.R., Vastola, F.J., Walker Jr., P.N.: The importance of active surface area in the carbon-oxygen reaction. J. Phys. Chem. 67, 2030–2034 (1963)
Ehrburger, P., Louys, F., Lahaye, J.: The concept of active sites applied to the study of carbon reactivity. Carbon 27, 389–393 (1989)
Burg, P., Abraham, M.H., Cagniant, D.: Methods of determining polar and non-polar sites on carbonaceous adsorbents. The contribution of the linear solvation energy relationship approach. Carbon 41, 867–879 (2003)
Groszek, A.J.: Graphitic and polar surface sites in carbonaceous solids. Carbon 25, 717–722 (1987)
López-Garzón, F.J., Pydan, M., Domingo-Garcia, M.: Studies of the surface properties of active carbons by inverse gas chromatography at infinite dilution. Langmuir 9, 531–536 (1993)
Tisserand, C., Calvet, R., Patry, S., Galet, L., Doods, J.A.: Comparison of two techniques for the surface analysis of alumina (Al2O3): inverse gas chromatography at finite concentration (IGC-FC) and dynamic vapor sorption (DVS). Powder Technol. 190, 53–58 (2009)
Nowak, E., Combes, G., Stitt, E.H., Pacek, A.W.: A comparison of contact angle measurement techniques applied to highly porous catalyst supports. Powder Technol. 233, 52–64 (2013)
Burnett, D., Thielmann, F.: Organic solvent sorption using a dynamic vapour sorption instrument-an overview. Application Note 103, Surface Measurement Systems Ltd., (last update 24/11/06)
Levoguer, C.L., Williams, D.R.: Measurement of the surface energies of pharmaceutical powders using a novel vapour adsorption method. Application Note 17, Surface Measurement Systems Ltd.
Burnett, D., Thielmann, F., Booth, J.: Determining the heat of sorption on organic and inorganic powders using DVS. Application Note 19, Surface Measurement Systems Ltd.
Klomkliang, N., Kaewmanee, R., Saimoey, S., Intarayothy, S., Do, D.D.: Adsorption of water and methanol on highly graphitized thermal carbon black: the effects of functional group and temperature on the isosteric heat at low loadings. Carbon 99, 361–369 (2016)
Argyropoulos, D., Alex, R., Kohler, R., Müller, J.: Moisture sorption isotherms and isosteric heat of sorption of leaves and stems of lemon balm (Melissa officinalis L.) established by dynamic vapor sorption. LWT Food Sci. Technol. 47, 324–331 (2012)
Choudhury, D., Sahu, J.K., Sharma, G.D.: Moisture sorption isotherms, heat of sorption and properties of sorbed water of raw bamboo (Dendrocalamus longispathus) shoots. Ind. Crops Prod. 33, 211–216 (2011)
Quirijns, E.J., van Boxtel, A.J.B., Loon, W.K.P., van Straten, G.: Sorption isotherms, GAB parameters and isosteric heat of sorption. J. Sci. Food Agric. 85, 1805–1814 (2005)
Sarkisov, L., Centineo, A., Brandani, S.: Molecular simulation and experiments of water adsorption in a high surface area activated carbon: hysteresis, scanning curves and spatial organization of water clusters. Carbon 118, 127–138 (2017)
Ducousso, M.: Gasification biochar reactivity toward methane cracking. Ph.D. thesis, Université de Toulouse (2015). https://tel.archives-ouvertes.fr/tel-01411838
Figueiredo, J., Pereira, M.F., Freitas, M.M., Órfão, J.J.: Modification of the surface chemistry of activated carbons. Carbon 37, 1379–1389 (1999)
Zhou, J.H., Sui, Z.J., Zhu, J., Li, P., Chen, D., Dai, Y.C., Yuan, W.-K.: Characterization of surface oxygen complexes on carbon nanofibers by TPD. XPS FT-IR. Carbon 45, 785–796 (2007)
Szymański, G.S., Karpiński, Z., Biniak, S., Świa̧tkowski, A.: The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639 (2002)
Ferrari, A.C.: Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)
Asadullah, M., Zhang, S., Min, Z., Yimsiri, P., Li, C.Z.: Effects of biomass char structure on its gasification reactivity. Bioresour. Technol. 101, 7935–7943 (2010)
Dresselhaus, M.S., Jorio, A., Souza Filho, A.G., Saito, R.: Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Philos. Trans. R. Soc. A 368, 5355–5377 (2010)
McDonald-Wharry, J., Manley-Harris, M., Pickering, K.: Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon 59, 383–405 (2013)
Vautard, F., Dentzer, J., Nardin, M., Schultz, J., Defoort, B.: Influence of surface defects on the tensile strength of carbon fibers. Appl. Surf. Sci. 322, 185–193 (2014)
Casari, C.S., Tommasini, M., Tykwinski, R.R., Milani, A.: Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 8, 4414–4435 (2016)
Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005)
Li, X., Hayashi, J., Li, C.Z.: FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel 85, 1700–1707 (2006)
Li, X., Hayashi, J., Li, C.Z.: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 85, 1509–1517 (2006)
Zickler, G.A., Smarsly, B., Gierlinger, N., Peterlik, H., Paris, O.: A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon 44, 3239–3246 (2006)
Keown, D.M., Li, X., Hayashi, J.I., Li, C.Z.: Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Process. Technol. 89, 1429–1435 (2008)
Mallet-Ladeira, P., Puech, P., Weisbecker, P., Vignoles, G.L., Monthioux, M.: Behavior of Raman D band for pyrocarbons with crystallite size in the 2–5 nm range. Appl. Phys. A 114, 759–763 (2014)
Cong, C., Li, K., Zhang, X.X., Yu, T.: Visualization of arrangements of carbon atoms in graphene layers by Raman mapping and atomic-resolution TEM. Sci. Rep. 3 (2013). https://dx.doi.org/10.1038/srep01195
Shen, A.-L., Weng, Y.-C., Chou, T.-C.: Effect of the analytic regions on the quality trend of diamond-like/graphitic carbon ratios in Raman Spectra. Z. Naturforsch., B: Chem. Sci 65, 67–71 (2010)
Kudin, K.N., Ozbas, B., Schniepp, H.C., Prud’homme, R.K., Aksay, I.A., Car, R.: Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 8, 36–41 (2008)
Chu, P.K., Li, L.: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006)
Campos-Delgado, J., Botello-Méndez, A.R., Algara-Siller, G., Hackens, B., Pardoen, T., Kaiser, U., Dresselhaus, M.S., Charlier, J.C., Raskin, J.P.: CVD synthesis of mono- and few-layer graphene using alcohols at low hydrogen concentration and atmospheric pressure. Chem. Phys. Lett. 584, 142–146 (2013)
Besser, A. I., Chen, Z.: FEI Tecnai F-20 operations manual. Center for Electron Microscopy and Nanofabrication. Portland State University (last update 2010). https://www.pdx.edu/sites/www.pdx.edu.cemn/files/TEM_manual.pdf
Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Bozin, E.S., Bloch, J., Proffen, T., Billinge, S.J.L.: PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter (2007). https://doi.org/10.1088/0953-8984/19/33/335219
Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M.: Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)
Proffen, T., Kim, H.: Advances in total scattering analysis. J. Mater. Chem. 19, 5078–5088 (2009)
Proffen, T., Billinge, S.: PDFFIT 1.3 users guide: http://www.diffpy.org/doc/pdffit/pdf_man.pdf (created in 2003). Accessed Nov. 2017
Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300–14306 (2003)
Downs, R.T.: The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, O03-13 (2006). http://rruff.info/
Li, Y.: Operating procedure for Tecnai G2 STEM, 4D Labs Research Institute, Simon Fraser University (version 1.7). https://users.4dlabs.ca/uploads/documents/SOP-STEM1.pdf
Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P.: Transmission electron microscopy investigation of ultrafine coal fly ash particles. Environ. Sci. Technol. 39, 1144–1151 (2005)
Chen, Y., Shah, N., Huggins, F.E., Huffman, G.P.: Characterization of fine and ultrafine fly ash by electron microscopy techniques. World of Coal Ash. https://www.researchgate.net/publication/266338677_Characterization_of_Fine_and_Ultrafine_Fly_Ash_by_Electron_Microscopy_Techniques (2005). Accessed June 2018
Degen, T., Sadki, M., Bron, E., König, U., Nénert, G.: The HighScore suite. Powder Diffr. 29(S2), S13–S18 (2014)
Bruker: X-ray Diffraction Software. https://www.bruker.com/fr/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrd-software.html. Accessed Feb. 2018
ICDD: The International Centre for Diffraction Data. www.icdd.com. Accessed Feb. 2018
MIT Center for Materials Science and Engineering. http://prism.mit.edu/xray/oldsite/tutorials.htm. Accessed Feb. 2018
Chung, F.H.: Quantitative interpretation of X-ray diffraction patterns of mixtures, III- simultaneous determination of a set of reference intensities. J. Appl. Crystallogr. 8, 17–19 (1974)
Bish, D.L., Howard, S.A.: Quantitative phase analysis using the Rietveld method. J. Appl. Crystallogr. 21, 86–91 (2001)
Will, G.: The Rietveld method and the two stage method. In: Will, G. (eds.) Powder Diffraction, pp. 42–194. Springer, Berlin (2006)
Crystallography Open Database. http://www.crystallography.net/cod/. Accessed Feb. 2018
Hill, R.J., Fischer, R.X.: Profile agreement indices in Rietveld and pattern- fitting analysis. J. Appl. Crystallogr. 23, 462–468 (1990)
Jansen, E., Schäfer, W., Will, G.: R values in analysis of powder diffraction data using Rietveld refinement. J. Appl. Crystallogr. 27, 492–496 (1994)
Brian, H.T.: R factors in Rietveld analysis: how good is good enough? Powder Diffr. 21, 67–70 (2006)
Young, R.A.: Introduction to the Rietveld method. In: Young, R.A. (ed.) The Rietveld Method, pp. 1–38. Oxford University Press, Oxford (1993)
De La Torre, A.G., Brusque, S., Aranda, M.A.G.: Rietveld quantitative amorphous content analysis. J. Appl. Crystallogr. 34, 196–202 (2001)
Orlhac, X., Fillet, C., Deniard, P., Dulac, A.M., Brec, R.: Determination of the crystallized fraction of a largely amorphous multiphase material by Rietveld method. J. Appl. Crystallogr. 34, 114–118 (2001)
Scherrer, P.: Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttinger. 26, 98–100 (1918)
Langford, J.L., Wilson, A.J.C.: Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 11, 102–113 (1978)
Williamson, G.K., Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Mettall. 1, 22–31 (1953)
Marsh, H., Rodriguez-Reinoso, F.: Activated Carbon. Elsevier, Oxford (2006)
Ruland, W., Smarsly, B.: X-ray scattering of non-graphitic carbon: an improved method of evaluation. J. Appl. Crystallogr. 35, 624–633 (2002)
Manoj, B., Kunjomana, A.G.: Study of stacking structure of amorphous carbon by X-Ray diffraction technique. Int. J. Electrochem. Sci. 7, 3127–31324 (2012)
Iwashita, N., Park, C.R., Fujimoto, H., Shiraishi, M., Inagakie, M.: Specification for a standard procedure of X-ray diffraction measurements on carbon materials. Carbon 42, 710–714 (2004)
Yasuda, E-I., Inagaki, M.: X-ray diffraction method to study crystallite size and lattice constants of carbon materials. In: E-I. Yasuda, Inagaki, M., Kaneko, K., Endo, M., Oya, A., Tanabe, Y. (eds.) Carbons Allows: Novel Concepts to develop Carbon Science and Technology, pp. 161–173. Elsevier, Oxford (2003)
Acknowledgements
The author thanks Pascal Puech and Marc Monthioux (CEMES-CNRS, Toulouse, France) for their relevant advices.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Weiss-Hortala, E. et al. (2020). Solid Residues (Biochar, Bottom Ash, Fly Ash, …). In: Nzihou, A. (eds) Handbook on Characterization of Biomass, Biowaste and Related By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-35020-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-35020-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-35019-2
Online ISBN: 978-3-030-35020-8
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)