Condensable and Liquid Compounds from Biomass and Waste Thermal Degradation



This chapter deals with condensable/liquid compounds produced during biomass and waste thermal degradation processes. These compounds include a huge number of species, mainly organic, but also inorganic. These species may vary according to biomass or waste type, and even more according to process operating conditions, namely temperature, heating rate, reactive gas or pressure. For instance, liquids obtained during torrefaction and their related yields will be strongly different from those obtained during slow pyrolysis, fast pyrolysis or gasification. A general overview is therefore firstly given of the condensable/liquid compounds produced in each of the main thermal processes together with their typical mass yields. Then the emphasis is put on the challenging task of determination of composition in organic and inorganic species. The most common measurement techniques of these condensable/liquid compounds are detailed. For each technique, the principle and a typical experimental procedure are given, as well as the main advantages and drawbacks, notably regarding species detected, accuracy limits and thus suitability with the different thermal processes. Both online analysis methods, and offline methods are considered. In the case of offline analysis, particular attention is paid to the sample collection step, for instance through condensation in staged cooled vessels.


  1. 1.
    Libra, J.A., Ro, K.S., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.M., Fühner, C., Bens, O., Kern, J., Emmerich, K.H.: Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2, 71–106 (2011)CrossRefGoogle Scholar
  2. 2.
    Nocquet, T., Dupont, C., Commandre, J.M., Grateau, M., Thiery, S., Salvador, S.: Volatile species release during torrefaction of wood and its macromolecular constituents: part 1—experimental study. Energy 72, 180–187 (2014)CrossRefGoogle Scholar
  3. 3.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)CrossRefGoogle Scholar
  4. 4.
    Kaltschmitt, M., Thrän, D.: Chapter 7. Biomass-based green energy generation. In: Hofer, R. (ed.) Sustainable Solutions for Modern Economies, pp. 86–124. RSC Publishing, Cambridge (2009)CrossRefGoogle Scholar
  5. 5.
    Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)CrossRefGoogle Scholar
  6. 6.
    Stoytcheva, M.: Pesticides in the Modern World—Pesticides Use and Management. InTechOpen (2011)Google Scholar
  7. 7.
    Pyro Wiki: Welcome to PyroWiki. (2018). 12 Jan 2018
  8. 8.
    Balat, M., Kırtay, E., Balat, H.: Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: pyrolysis systems. Energy Convers. Manag. 50, 3147–3157 (2009)CrossRefGoogle Scholar
  9. 9.
    Vitasari, C.R., Meindersma, G.W., de Haan, A.B.: Conceptual process design of an integrated bio-based acetic acid, glycolaldehyde, and acetol production in a pyrolysis oil-based biorefinery. Chem. Eng. Res. Des. 95, 133–143 (2015)CrossRefGoogle Scholar
  10. 10.
    Oasmaa, A., van de Beld, B., Saari, P., Elliott, D.C., Solantausta, Y.: Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy Fuels 29, 2471–2484 (2015)CrossRefGoogle Scholar
  11. 11.
    Anca-Couce, A., Mehrabian, R., Scharler, R., Obernberger, I.: Kinetic scheme of biomass pyrolysis considering secondary charring reactions. Energy Convers. Manag. 87, 687–696 (2014)CrossRefGoogle Scholar
  12. 12.
    Anca-Couce, A., Brunner, T., Kanzian, W., Obernberger, I., Trattner, K.: Characterization and condensation behaviour of gravimetric tars produced during spruce torrefaction. J. Anal. Appl. Pyrol. 119, 173–179 (2016)CrossRefGoogle Scholar
  13. 13.
    Oasmaa, A., Fonts, I., Pelaez-Samaniego, M.R., Garcia-Perez, M.E., Garcia-Perez, M.: Pyrolysis oil multiphase behavior and phase stability: a review. Energy Fuels 30, 6179–6200 (2016)CrossRefGoogle Scholar
  14. 14.
    Bayerbach, R., Meier, D.: Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: structure elucidation of oligomeric molecules. J. Anal. Appl. Pyrol. 85, 98–107 (2009)CrossRefGoogle Scholar
  15. 15.
    Anca-Couce, A.: Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis. Prog. Energy Combust. Sci. 53, 41–79 (2016)CrossRefGoogle Scholar
  16. 16.
    Nachenius, R.W., Ronsse, F., Venderbosch, R.H., Prins, W.: Biomass pyrolysis. In: Murzin, D.Y. (ed.) Chemical Engineering for Renewables Conversion, pp. 75–139. Academic Press, Burlington (2013)CrossRefGoogle Scholar
  17. 17.
    Branca, C., Di Blasi, C.: Kinetics of the isothermal degradation of wood in the temperature range 528–708 K. J. Anal. Appl. Pyrol. 67, 207–219 (2003)CrossRefGoogle Scholar
  18. 18.
    Neves, D., Thunman, H., Matos, A., Tarelho, L., Gómez-Barea, L.: Characterization and prediction of biomass pyrolysis products. Prog. Energy Combust. Sci. 37, 611–630 (2011)CrossRefGoogle Scholar
  19. 19.
    Evans, R.J., Milne, T.A.: Molecular characterization of the pyrolysis of biomass. Energy Fuels 1, 123–137 (1987)CrossRefGoogle Scholar
  20. 20.
    Koppejan, J., Sokhansanj, S., Melin, S.: Status overview of torrefaction technologies (2012)Google Scholar
  21. 21.
    van der Stelt, M.J.C., Gerhauser, H., Kiel, J.H.A., Ptasinski, K.J.: Biomass upgrading by torrefaction for the production of biofuels: a review. Biomass Bioenergy (2011).
  22. 22.
    Anca-Couce, A., Obernberger, I.: Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel 167, 158–167 (2016)CrossRefGoogle Scholar
  23. 23.
    González Martínez, M., Dupont, C., Thiéry, S., Meyer, X.M., Gourdon, C.: Impact of biomass diversity on torrefaction: study of solid conversion and volatile species formation through an innovative TGA-GC/MS apparatus. Biomass Bioenergy 119, 43–53 (2018)CrossRefGoogle Scholar
  24. 24.
    Heidenreich, S., Foscolo, P.U.: New concepts in biomass gasification. Prog. Energy Combust. Sci. 46, 72–95 (2015)CrossRefGoogle Scholar
  25. 25.
    Basu, P.: Biomass Gasification and Pyrolysis. Academic Press, Burlington (2010)Google Scholar
  26. 26.
    Staš, M., Chudoba, J., Kubička, D., Blažek, J., Pospíšil, M.: Petroleomic characterization of pyrolysis bio-oils: a review. Energy Fuels 31, 10283–10299 (2017)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Ma, Z., Chen, D., Gu, J., Bao, B., Zhang, Q.: Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers. Manag. 89, 251–259 (2015)CrossRefGoogle Scholar
  29. 29.
    Singh, S., Wu, C., Williams, P.T.: Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. J. Anal. Appl. Pyrol. 94, 99–107 (2012)CrossRefGoogle Scholar
  30. 30.
    Biagini, E., Barontini, F., Tognotti, L.: Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Ind. Eng. Chem. Res. 45, 4486–4493 (2006)CrossRefGoogle Scholar
  31. 31.
    De Jong, W., Pirone, A., Wojtowicz, M.: Pyrolysis of Miscanthus giganteus and wood pellets: TG-FTIR analysis and reaction kinetics. Fuel 82, 1139–1147 (2003)CrossRefGoogle Scholar
  32. 32.
    Gao, N., Li, A., Quan, C., Du, L., Duan, Y.: TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. J. Anal. Appl. Pyrol. 100, 26–32 (2013)CrossRefGoogle Scholar
  33. 33.
    Giuntoli, J., de Jong, W., Arvelakis, S., Spliethoff, H., Verkooijen, A.H.M.: Quantitative and kinetic TG-FTIR study of biomass residue pyrolysis: dry distiller’s grains with solubles (DDGS) and chicken manure. J. Anal. Appl. Pyrol. 85, 301–312 (2009)CrossRefGoogle Scholar
  34. 34.
    Tsamba, A.J., Yang, W., Blasiak, W., Wójtowicz, M.A.: Cashew nut shells pyrolysis: individual gas evolution rates and yields. Energy Fuels 21, 2357–2362 (2007)CrossRefGoogle Scholar
  35. 35.
    Liu, Q., Zhong, Z., Wang, S., Luo, Z.: Interactions of biomass components during pyrolysis: a TG-FTIR study. J. Anal. Appl. Pyrol. 90, 213–218 (2011)CrossRefGoogle Scholar
  36. 36.
    Bennadji, H., Smith, K., Shabangu, S., Fisher, E.M.: Low-temperature pyrolysis of woody biomass in the thermally thick regime. Energy Fuels 27, 1453–1459 (2013)CrossRefGoogle Scholar
  37. 37.
    Anca-Couce, A., Sommersacher, P., Scharler, R.: Online experiments and modelling with a detailed reaction scheme of single particle biomass pyrolysis. J. Anal. Appl. Pyrol. 127, 411–425 (2017)CrossRefGoogle Scholar
  38. 38.
    Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D.: Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renew. Sustain. Energy Rev. 64, 187–194 (2016)CrossRefGoogle Scholar
  39. 39.
    Chen, D., Liu, D., Zhang, H., Chen, Y., Li, Q.: Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148, 79–86 (2015)CrossRefGoogle Scholar
  40. 40.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York (2006)CrossRefGoogle Scholar
  41. 41.
    Skoog, D.A., Holler, F.J., Crouch, S.R.: Principles of Instrumental Analysis, 6th edn. Brooks Cole, Belmont (2007)Google Scholar
  42. 42.
    Kohse-Höinghaus, K., Jefferies, J.B.: Applied Combustion Diagnostics. CRC Press, New York (2002)Google Scholar
  43. 43.
    Brackmann, C., Sjöholm, J., Rosell, J., Richter, M., Bood, J., Aldén, M.: Picosecond excitation for reduction of photolytic effects in two-photon laser-induced fluorescence of CO. Proc. Combust. Inst. 34, 3541–3548 (2013)CrossRefGoogle Scholar
  44. 44.
    Prins, M.J., Li, Z.S., Bastiaans, R.J.M., van Oijen, J.A., Aldén, M., de Goey, L.P.H.: Biomass pyrolysis in a heated-grid reactor: visualization of carbon monoxide and formaldehyde using laser-induced fluorescence. J. Anal. Appl. Pyrol. 92, 280–286 (2011)CrossRefGoogle Scholar
  45. 45.
    Kohse-Höinghaus, K.: Laser techniques for the quantitative detection of reactive intermediates in combustion systems. Prog. Energy Combust. Sci. 20, 203–279 (1994)CrossRefGoogle Scholar
  46. 46.
    Keller-Rudek, H., Moortgat, G.K., Sander, R., Sörensen, R.: The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest. Earth Syst. Sci. Data 5, 365–373 (2013)CrossRefGoogle Scholar
  47. 47.
    Grosch, H., Sárossy, Z., Egsgaard, H., Fateev, A.: UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 °C. J. Quant. Spectrosc. Radiat. Transf. 156, 17–23 (2015)CrossRefGoogle Scholar
  48. 48.
    Thöny, A., Rossi, M.J.: Gas-phase UV spectroscopy of anthracene, xanthone, pyrene, 1-bromopyrene and 1,2,4-trichlorobenzene at elevated temperatures. J. Photochem. Photobiol. Chem. 104, 25–33 (1997)CrossRefGoogle Scholar
  49. 49.
    Gratien, A., Nilsson, E., Doussin, J.F., Johnson, M.S., Nielsen, C.J., Stenstrøm, Y., Picquet-Varrault, B.: UV and IR absorption cross-sections of HCHO, HCDO, and DCDO. J. Phys. Chem. A 111, 11506–11513 (2007)CrossRefGoogle Scholar
  50. 50.
    Lang, N., Rupp, C., Almuina-Villar, H., Dieguez-Alonso, A., Behrendt, F., Röpcke, J.: Pyrolysis behavior of thermally thick wood particles: time-resolved characterization with laser based in-situ diagnostics. Fuel 210, 371–379 (2017)CrossRefGoogle Scholar
  51. 51.
    Borgmeyer, Y., Neubauer, J.: Continuous on-line tar monitoring for process control. In: Proceedings of 24th European Biomass Conference and Exhibition (2016)Google Scholar
  52. 52.
    Borgmeyer, J., Continuous on-line tar monitoring in hot process gases from biomass gasification by means of fluorescence spectroscopy. PhD thesis, Technische Universität Berlin, Mar 2019, unpublishedGoogle Scholar
  53. 53.
    Sun, R., Zobel, N., Neubauer, Y., Cardenas Chavez, C., Behrendt, F.: Analysis of gas-phase polycyclic aromatic hydrocarbon mixtures by laser-induced fluorescence. Opt. Lasers Eng. 48, 1231–1237 (2010)CrossRefGoogle Scholar
  54. 54.
    Mitsakis, M.: Online analysis of the tar content of biomass gasification producer gas. Technische Universität München (2011)Google Scholar
  55. 55.
    Meng, X., Mitsakis, P., Mayerhofer, M., de Jong, W., Gaderer, M., Verkooijen, A.H.M., Spliethoff, H.: Tar formation in a steam-O2 blown CFB gasifier and a steam blown PBFB gasifier (BabyHPR): comparison between different on-line measurement techniques and the off-line SPA sampling and analysis method. Fuel Process. Technol. 100, 16–29 (2012)CrossRefGoogle Scholar
  56. 56.
    Baumhakl, C., Karellas, S.: Tar analysis from biomass gasification by means of online fluorescence spectroscopy. Opt. Lasers Eng. 49, 885–891 (2011)CrossRefGoogle Scholar
  57. 57.
    Dieguez-Alonso, A., Anca-Couce, A., Zobel, N.: On-line tar characterization from pyrolysis of wood particles in a technical-scale fixed-bed reactor by applying laser-induced fluorescence (LIF). J. Anal. Appl. Pyrol. 102, 33–46 (2013)CrossRefGoogle Scholar
  58. 58.
    Dieguez-Alonso, A., Anca-Couce, A., Zobel, N., Behrendt, F.: Understanding the primary and secondary slow pyrolysis mechanisms of holocellulose, lignin and wood with laser-induced fluorescence. Fuel 153, 102–109 (2015)CrossRefGoogle Scholar
  59. 59.
    Zobel, N., Anca-Couce, A.: Slow pyrolysis of wood particles: characterization of volatiles by laser-induced fluorescence. Proc. Combust. Inst. 34, 2355–2362 (2013)CrossRefGoogle Scholar
  60. 60.
    Karellas, S., Karl, J.: Analysis of the product gas from biomass gasification by means of laser spectroscopy. Opt. Lasers Eng. 45, 935–946 (2007)CrossRefGoogle Scholar
  61. 61.
    Bontemps, A.: Condensation de mélanges de vapeurs—Transfert de chaleur et de masse. Techniques de l’Ingénieur. BE9910 v1 (2001)Google Scholar
  62. 62.
    Tumuluru, J.S., Sokhansanj, S., Wright, C.T., Kremer, T.: GC analysis of volatiles and other products from biomass torrefaction process. Adv. Gas Chromatogr. Prog. Agr. Biomed. Ind. Appl. 211–234 (2012)Google Scholar
  63. 63.
    Robson, A.: Dynamotive 2000. Progress report. PyNe Newsletter (2000)Google Scholar
  64. 64.
    Bridgwater, A.: Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 91, 87–102 (2003)CrossRefGoogle Scholar
  65. 65.
    Chen, T., Deng, C., Liu, R.: Effect of selective condensation on the characterization of bio-oil from pine sawdust fast pyrolysis using a fluidized-bed reactor. Energy Fuels 24, 6616–6623 (2010)CrossRefGoogle Scholar
  66. 66.
    Westerhof, R.J.M., Kuipers, N.J.M., Kersten, S.R.A., van Swaaij, W.P.M.: Controlling the water content of biomass fast pyrolysis oil. Ind. Eng. Chem. Res. 46, 9238–9247 (2007)CrossRefGoogle Scholar
  67. 67.
    Jendoubi, N., Broust, F., Commandre, J.M., Mauviel, G., Sardin, M., Lédé, J.: Inorganics distribution in bio oils and char produced by biomass fast pyrolysis: the key role of aerosols. J. Anal. Appl. Pyrol. 92, 59–67 (2011)CrossRefGoogle Scholar
  68. 68.
    Oasmaa, A., Sipilä, K., Solantausta, Y., Kuoppala, E.: Quality improvement of pyrolysis liquid: effect of light volatiles on the stability of pyrolysis liquids. Energy Fuels 19, 2556–2561 (2005)CrossRefGoogle Scholar
  69. 69.
    Pollard, A.: Comparison of bio-oil produced in a fractionated bio-oil collection system. Iowa State University (2009)Google Scholar
  70. 70.
    AFNOR: Biomass gasification. Tar and particles in product gases. Sampling and analysis. DD CEN/TS 15439:2006 (2007)Google Scholar
  71. 71.
    Good, V., Ventress, L., Knoef, H., Zielke, U., Lyckhansen, P., van de Kamp, W., de Wild, P., Coda, S., van Paasen, S., Kiel, J., Sjöström, K., Liliedahl, T., Unger, C., Neeft, J., Suomalainen, M., Simel, L.: Sampling and analysis of tar and particles in biomass producer gases. Technical report prepared under CEN BT/TF 143 organic contaminants (“tar”) in biomass producer gases (2005)Google Scholar
  72. 72.
    Kern, S., Pfeifer, C., Hofbauer, H.: Gasification of wood in a dual fluidized bed gasifier: influence of fuel feeding on process performance. Chem. Eng. Sci. 90, 284–298 (2013)CrossRefGoogle Scholar
  73. 73.
    Chromedia Analytical Sciences: Principles of SPME. (2018). Accessed on 2 Feb 2018
  74. 74.
    Comte, J.: Mise au point d’une méthodologie d’échantillonnage utilisant la micro-extraction sur phase solide pour la quantification de goudrons sur des procédés de thermolyse de la biomasse. Université Joseph Fourier, Grenoble I (2008)Google Scholar
  75. 75.
    Voinot, D.: Caractérisation des composés organiques volatils issus du séchage du bois. Application au chêne rouge et au pin gris. Université Laval (2007)Google Scholar
  76. 76.
    McGraw, G.W., Hemingway, R.W., Ingram, L.L., Canady, C.S., McGraw, W.B.: Thermal degradation of terpenes: camphene, Δ3-carene, limonene, and α-terpinene. Environ. Sci. Technol. 33, 4029–4033 (1999)CrossRefGoogle Scholar
  77. 77.
    Tessini, C., Müller, N., Mardones, C., Meier, D., Berg, A., von Baer, D.: Chromatographic approaches for determination of low-molecular mass aldehydes in bio-oil. J. Chromatogr. A 1219, 154–160 (2012)CrossRefGoogle Scholar
  78. 78.
    TurboMatrix: Turbomatrix series thermodesorbers. (2015). Accessed on 30 June 2015
  79. 79.
    Simon, V., Riba, M.L., Waldhart, A., Torres, L.: Breakthrough volume of monoterpenes on Tenax TA: influence of temperature and concentration for α-pinene. J. Chromatogr. A 704, 465–471 (1995)CrossRefGoogle Scholar
  80. 80.
    Dufour, A., Girods, P., Masson, E., Normand, S., Rogaume, Y., Zoulalian, A.: Comparison of two methods of measuring wood pyrolysis tar. J. Chromatogr. A 1164, 240–247 (2007)CrossRefGoogle Scholar
  81. 81.
    Candelier, K., Dumarcay, S., Petrissans, A., Petrissans, M., Kamdem, P., Gerardin, P.: Thermodesorption coupled to GC-MS to characterize volatiles formation kinetic during wood thermodegradation. J. Anal. Appl. Pyrol. 101, 96–102 (2013)CrossRefGoogle Scholar
  82. 82.
    Grob, R.L., Barry, E.F.: Modern Practice of Gas Chromatography. Wiley, Hoboken (2004)CrossRefGoogle Scholar
  83. 83.
    Poole, C.F.: Ionization-based detectors for gas chromatography. J. Chromatogr. A 1421, 137–153 (2015)CrossRefGoogle Scholar
  84. 84.
    Faiola, C.L., Erickson, M.H., Fricaud, V.L., Jobson, B.T., VanReken, T.M.: Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept. Atmospheric Meas. Tech. 5, 1911–1923 (2012)CrossRefGoogle Scholar
  85. 85.
    Wang, W.T., LeDonne, N.C., Ackerman, B., Sweeley, C.C.: Structural characterization of oligosaccharides by high-performance liquid chromatography, fast-atom bombardment-mass spectrometry, and exoglycosidase digestion. Anal. Biochem. 141, 366–381 (1984)CrossRefGoogle Scholar
  86. 86.
    Sternberg, J.: Placental transfers: modern methods of study. Am. J. Obstet. Gynecol. 84, 1731–1748 (1962)CrossRefGoogle Scholar
  87. 87.
    Dietz, A.J.: Biotransformation studies on 1-chloro-2, 3-propanediol dinitrate. J. Pharm. Sci. 56, 1664–1665 (1967)CrossRefGoogle Scholar
  88. 88.
    Herthan, T., Moersch, O., Spliethoff, H., Berger, R.: The tar analyser—a suitable tool for the development and control of gasifiers and gas cleaning system. In: 1st World Conference on Biomass for Energy and Industry, Sevilla, Spain (2000)Google Scholar
  89. 89.
    Staš, M., Kubička, D., Chudoba, J., Pospíšil, M.: Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy Fuels 28(1), 385–402 (2014)CrossRefGoogle Scholar
  90. 90.
    Snyder, L.R., Kirkland, J.J., Dolan, J.W.: Introduction to Modern Liquid Chromatography, 3rd edn. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  91. 91.
    Gennaro, M.C., Angelino, S.: Separation and determination of inorganic anions by reversed-phase high-performance liquid chromatography. J. Chromatogr. A 789, 181–194 (1997)CrossRefGoogle Scholar
  92. 92.
    Chen, S.F., Mowery, R.A., Castleberry, V.A., van Walsum, G.P., Chambliss, C.K.: High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. J. Chromatogr. A 1104, 54–61 (2006)CrossRefGoogle Scholar
  93. 93.
    Chheda, J.N., Román-Leshkov, Y., Dumesic, J.A.: Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 9, 342–350 (2007)CrossRefGoogle Scholar
  94. 94.
    Wheaton, R.M., Bauman, W.C.: Ion exclusion—a unit operation utilizing ion exchange materials. Ind. Eng. Chem. 45, 228–233 (1953)CrossRefGoogle Scholar
  95. 95.
    Weiss, J., Schpigun, O.: Handbook of Ion Chromatography, 3 Volume Set, 4th edn. Wiley, Hoboken (2016)CrossRefGoogle Scholar
  96. 96.
    Damay, J., Duret, X., Ghislain, T., Lalonde, O., Lavoie, J.M.: Steam explosion of sweet sorghum stems: optimisation of the production of sugars by response surface methodology combined with the severity factor. Ind. Crops Prod. 111, 482–493 (2018)CrossRefGoogle Scholar
  97. 97.
    Scarlata, C.J., Hyman, D.A.: Development and validation of a fast high pressure liquid chromatography method for the analysis of lignocellulosic biomass hydrolysis and fermentation products. J. Chromatogr. A 1217, 2082–2087 (2010)CrossRefGoogle Scholar
  98. 98.
    Tanaka, K., Haddad, P.R.: Ion exclusion chromatography: liquid chromatography. In: Wilson, I. (ed.) Encyclopedia of Separation Science, pp. 3193–3201. Academic Press, London (2000)CrossRefGoogle Scholar
  99. 99.
    Tanaka, K., Ohta, K., Fritz, J.S., Lee, Y.S., Shim, S.B.: Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on an H+-form cation-exchange resin column by elution with polyols and sugars. J. Chromatogr. A 706, 385–393 (1995)CrossRefGoogle Scholar
  100. 100.
    Porath, J., Flodin, P.: Gel filtration: a method for desalting and group separation. Nature 183, 1657–1659 (1959)CrossRefGoogle Scholar
  101. 101.
    Consultant, S.K.: The HPLC-MS Handbook for Practitioners. Wiley, Hoboken (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Environmental Engineering and Water TechnologyIHE Delft Institute for Water EducationDelftThe Netherlands
  2. 2.Institut für Wärmetechnik/Institute of Thermal Engineering, TU GrazGrazAustria
  3. 3.Biomass Energy UnitCIRADMontpellier Cedex 5France
  4. 4.Institute of Energy Engineering, Technische Universität BerlinBerlinGermany
  5. 5.Department of Chemical Engineering and Biotechnological EngineeringUniversité de SherbrookeSherbrookeCanada

Personalised recommendations